教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
(一)自学质疑看书 解决下面两个问题:1.下列图中的两个台阶哪个更陡?你是怎么判断的? 答:图 的台阶更陡,理由 2.除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
解析:横轴表示时间,纵轴表示温度.温度最高应找到图象的最高点所对应的x值,即15时,A对;温度最低应找到图象的最低点所对应的x值,即3时,B对;这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16(℃),C错;从图象看出,这天0~3时,15~24时温度在下降,D对.故选C.方法总结:认真观察图象,弄清楚时间是自变量,温度是因变量,然后由图象上的点确定自变量及因变量的对应值.三、板书设计1.用曲线型图象表示变量间关系2.从曲线型图象中获取变量信息图象法能直观形象地表示因变量随自变量变化的变化趋势,可通过图象来研究变量的某些性质,这也是数形结合的优点,但是它也存在感性观察不够准确,画面局限性大的缺点.教学中让学生自己归纳总结,回顾反思,将知识点串连起来,完成对该部分内容的完整认识和意义建构.这对学生在实际情境中根据不同需要选择恰当的方法表示变量间的关系,发展与深化思维能力是大有裨益的
在因式分解的几种方法中,提取公因式法师最基本的的方法,学生也很容易掌握。但在一些综合运用的题目中,学生总会易忘记先观察是否有公因式,而直接想着运用公式法分解。这样直接导致有些题目分解错误,有些题目分解不完全。所以在因式分解的步骤这一块还要继续加强。其实公式法分解因式。学生比较会将平方差和完全平方式混淆。这是对公式理解不透彻,彼此的特征区别还未真正掌握好。大体上可以从以下方面进行区分。如果是两项的平方差则在提取公因式后优先考虑平方差公式。如果是三项则优先考虑完全平方式进行因式分解。培养学生的整体观念,灵活运用公式的能力。注重总结做题步骤。这章节知识看起来很简单,但操作性很强的,相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手,基础不好的学生需要手把手的教,因此,应该引导学生总结多项式因式分解的一般步骤①如果多项式的各项有公因式,那么先提公因式;
解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.
解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.
曾经有这样一个故事,一位中国记者小钟去巴黎留学碰到一个教学严谨但提问刁钻的教授。当教授问他:“我可以知道你是来自哪个中国么?台湾还是北京?”小钟缓缓答道“只有一个中国这是常识,教授先生”。顿时教授和全班同学的目光都转向那位台湾学生,台湾学生缓缓回答:“是的,只有一个中国教授先生。”教授又递过来一句话:“你们想如何解决台湾和中国问题呢?”小钟答道:“会妥善解决的,不过目前更重要的是使中国富起来。”教授穷追不舍:“中国富起来的标准是什么呢?”小钟忽然一下子悲愤涌心,他狠狠的盯着这个刁钻的教授,一字一顿道:“最起码一条是,任何一个离开国门的我的同胞,不受今日这般刁难。教授缓缓走下讲台,拍着小钟得肩膀微笑说:我没有刁难的意思,只是想知道一个普通的中国人应如何看待自己的国家”。教授继而几步走回教室中央,大声宣布:“我向中国人脱帽致敬,下课!”
一、开展“政务服务大讲堂”活动的出发点市县两级行政审批局自成立以来,广大干部职工从不同行业的不同岗位聚集在一起,围绕提高履职能力、圆满完成任务,采取了很多措施,下了很大功夫。在部分业务量较大、专业性较强的科(股)室,干部职工加班学习、加班工作已经成为常态。在大家的共同努力下,4年多来,市县两级圆满完成了夯基垒台、立柱架梁的阶段性任务,整支队伍的能力素质和工作成绩,得到了各级各部门和广大企业、群众的普遍好评。但是也要看到,行政审批局到目前为止,还是一个新单位,人少人新,事多任务重,业务工作面临的压力非常大。特别是随着“放管服”改革、“X办事一次成”改革深入推进,随着机构职能不断增加、任务不断增多,随着企业、群众对政务服务效能的期望值越来越高,全市行政审批队伍能力不足、业务不精的问题不断显露
回首这5年,无论是大事要事、急事难事,都从件件不容易到最终能落地并交上满意的答卷,离不开大家的努力奋斗,5年来,全体乡村干部一起历经了多少次夜不成眠,绞尽脑汁;多少次苦口婆心,口干舌燥;多少次风雨兼程,奔波到村,我亲眼见证了全体乡村干部不畏艰难、负重前行的职业操守和特别能战斗、特别能吃苦、特别能奉献的精神。为了咱们××乡,我付出了人生最深厚的情感、最艰辛的付出,得到了最难得的历练、最全面的提升,也必将留下最难忘的记忆。
严格防控疫情。一是严防疫情反弹外溢。我们对XX镇封控区、管控区及重点暴露场所进行严格管理,连续开展“扫楼敲门”行动,确保相关人员“足不出户”“足不出小区”,防止疫情在社区出现反弹。全市倡导非必要不离XX、非必要不出省。二是严防疫情倒灌。这是为了应对当前全国疫情发展出现的形势变化,我们正在加大力度推进的重要工作。重点是像排查出此次XX疫情首两例病例一样,迅速管控排查出涉疫地区来XX返XX人员,以免新的疫情发生。请广大市民朋友密切留意疫情发展动态,如非必要近期不要前往中高风险地区以及疫情发生地区;
要立足于防大汛、抗大旱、抢大险、救大灾,从实际要求出发,抓紧补充储备防汛抗旱抢险物资,做好落实抢险方案和后勤保障。目前已进入汛期,各单位要抓紧查漏补缺,特别是重点险工险段必须将抢险物资提前运抵现场,一旦发生险情,确保“调得出、用得上”。
第一,强化底线意识,科学及时预测预警。镇、街道、区级各部门要高度重视防汛抗旱和地质灾害防治,切实增强工作的责任感和紧迫感,把措施落实到具体工作中,做到科学救灾、科学避险。要科学及时有序地开展预测预警,请区水利局及时和市气象局、市防震减灾局做好相关具体工作的对接。要做好防大灾的早准备、细准备、大准备,从省、市通报的情况看,今年攀枝花汛期降水量接近常年、降水偏多,降雨量在局部区域比较集中且空间分布不均,存在旱涝交替,发生极端天气事件风险较高,气候年景较差,而且局部区域发生泥石流、山洪、地质滑坡灾害等可能性加大,镇、街道、区级各部门必须克服侥幸心理、麻痹心理,防范于未然。
在这个新阶段,我们力争的营销目标是今年200亿、明年300亿;我们争取的产值目标是今年达到140亿、明年达到160亿;我们的年度利润目标要尽快达到3亿元。从企业运营的角度,我们的企业正在进入一个有序发展的阶段,我们的管理体系即将进入一个规范严格的阶段,我们的区域也即将进入一个有序整合的发展阶段。
一是早期消防设计问题突出。存在消防车通道狭窄,无救援场地等情况,加之私家车普及,占道现象突出,严重影响火灾扑救。二是建筑消防设施损坏严重。部分建筑消防维保经费投入不足,维护保养不到位,自防自救能力不足,消防设施“带病”运行,甚至瘫痪。三是高层建筑救援难度大。建筑高度越高,消防系统就越复杂,高层建筑内部人员众多,火灾后疏散困难,消防救援设备落后。
对招商对象了解不深入、不细致,不知道对方的优势特色、投资方向是什么,拿出的招商方案不具体,优惠政策针对性不强,对客商提出的问题也缺少严谨、详实、有效的回应,经常是没有做足充分准备就匆匆忙忙外出、热热闹闹会见、草草率率结束,没有达到预期效果。从引进的项目看,还缺少延链、补链、强链的大项目、好项目,特别是投资额度大、科技含量高、带动作用强的项目占比仍然偏低。
一、真抓实干,全省住建领域安全生产工作取得实效 今年以来,在省委、省政府的正确领导和住建部的大力支持关心下,全省住建系统坚持以提高建筑施工安全生产水平为目的,以房屋市政工程安全生产治理行动为主线,以推动企业落实安全生产主体责任为重点,狠抓危大工程安全管控,全力开展自建房安全专项整治和安全隐患排查治理,取得较好成效。截止目前,全省房屋市政工程领域未发生较大及以上生产安全事故,坚决遏制了重大事故发生,为我省建筑业高质量发展营造了稳定的安全生产环境
通过这段时间的走访调研,我深切感受全区高层建筑安全方面存在诸多隐患,主要表现在:一是早期消防设计问题突出。存在消防车通道狭窄,无救援场地等情况,加之私家车普及,占道现象突出,严重影响火灾扑救。二是建筑消防设施损坏严重。部分建筑消防维保经费投入不足,维护保养不到位,自防自救能力不足,消防设施“带病”运行,甚至瘫痪。三是高层建筑救援难度大。建筑高度越高,消防系统就越复杂,高层建筑内部人员众多,火灾后疏散困难,消防救援设备落后。这些问题事关我县高层建筑工程质量,事关人民群众的切身利益和生命财产安全,事关全区的稳定和发展的大局,必须引起各部门单位的高度重视,要全力推进高层建筑安全隐患整治行动,确保消防安全“大事不出,小事也不出”。
第一,保持头脑清醒,切实增强忧患意识当前,全球疫情仍在蔓延,境外输入风险不容忽视。进入常态化疫情防控阶段以来,辽宁、吉林舒兰、河北石家庄等地相继出现聚集性疫情,国内疫情单点爆发的态势没有根本转变。从XX的情况来看,近一年半的疫情防控工作,总体形势平稳,全市干部群众表现出明显的松劲懈怠和盲目乐观心理,认为疫情防控可以松口气、歇歇脚,甚至简单认为国内疫情风险已经全面化解;一些乡(镇、街道)和部门没有大局意识和政治敏锐性,市级抽调人员的时候讲条件、不配合,网格化措施形同虚设,重点人员排查走过场、信息不按时上报;部分公共场所监管不到位、常态化疫情防控措施落实不到位。X月X日,X州X市再次出现聚集性疫情,报告了大量确诊病例和无症状感染者,给我们敲响了警钟。我市在外务工、就学、经商等人口多,“外防输入”压力大,形势依然严峻复杂,任务依然艰巨繁重,在全省、全国总体形势向好的局面下,一旦出现疫情,就像眼睛里进了沙子,后果十分严重。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。