(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.
解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大.
解析:当截面与轴截面平行时,得到的截面的形状为长方形;当截面与轴截面斜交时,得到的截面的形状是椭圆;当截面与轴截面垂直时,得到的截面的形状是圆,所以截面的形状不可能是三角形.故选A.方法总结:用平面去截圆柱时,常见的截面有圆、椭圆、长方形、类似于梯形、类似于拱形等.探究点三:截圆锥问题一竖直平面经过圆锥的顶点截圆锥,所得到的截面形状与下图中相同的是()解析:经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线.如图,由图可知得到的截面是一个等腰三角形.故选B.方法总结:用平面去截圆锥,截面的形状可能是三角形、圆、椭圆等.三、板书设计教学过程中,强调学生自主探索和合作交流,经历操作、抽象、归纳、积累等思维过程,从中获得数学知识与技能,发展空间观念和动手操作能力,同时升华学生的情感态度和价值观.
[例3]、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是_________。四、巩固强化:1、一个正方体的截面不可能是( )A、三角形 B、梯形 C、五边形 D、七边形2、用一个平面去截五棱柱,边数最多的截面是_______形.3*、用一个平面去截几何体,若截面是三角形,这个几何体可能是__________________________________________________.4*、用一个平面截一个几何体,如果截面是圆,你能想象出原来的几何体可能是什么吗?如虹截面是三角形呢?5*、如果用一个平面截一个正方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?6*、几何体中的圆台、棱锥都是课外介绍的,所以我们就在这个栏目里继续为大家介绍这两种几何体的截面.(1)圆台用平面截圆台,截面形状会有_____和_______这两种较特殊图形,截法如下:
方法总结:利用三角形三边的数量关系来判定直角三角形,从而推出两线的垂直关系.探究点二:勾股数下列几组数中是勾股数的是________(填序号).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①组不符合勾股数的定义,不是勾股数;第③④组不是正整数,不是勾股数;只有第②组的9,40,41是勾股数.故填②.方法总结:判断勾股数的方法:必须满足两个条件:一要符合等式a2+b2=c2;二要都是正整数.三、板书设计勾股定理的逆定理: 如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.经历一般规律的探索过程,发展学生的抽象思维能力、归纳能力.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.
目的:课后作业设计包括了两个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;拓广知识,增加学生对数学问题本质的思考而设计,通过此题可让学生进一步运用三元一次方程组解决问题.教学设计反思1.本节课的内容属于选修学习的内容,主要突出对数学兴趣浓厚、学有余力的同学进一步探究和拓展使用,在数学方法和思想方面需重点引导,通过引导,使学生明白解多元方程组的一般方法和思想,理解巩固环节需多注意多种解题方法的引导,并且比较各种解题方法之间的优劣,总结出解多元方程的基本方法.2.作为选修课,在内容上要让学生理解三元一次方程组概念的同时,要让学生理解为什么要用三元一次方程组甚至多元方程组去求解实际问题的必要性,从而掌握本堂课的基础知识.在教学的过程中,要让学生充分理解对复杂的实际问题方程中元越多,等量关系的建立就越直接;充分理解代入消元法和加减法解方程的优点和缺点,有关这一方面的题目要让学生充分讨论、交流、合作,其理解才会深刻.
反思本课的教学过程,我有以下几点认识:1、重视学生的经验和体验,发展数感建构主义的学生观认为,学习不是教师把知识简单地传递给学生,而是学生自己建构知识的过程。在学习过程中,学生不是被动地接受信息,而是以原有知识经验为基础,主动地建构知识的意义。2、关注学生的思维,给学生较大的学习空间。引导学生自主探索的关键问题是要给学生多大的探究空间?我以引导学生自主探索作为根本出发点,设计具有较大探究问题的空间,如“你发现了什么?你有什么问题?”等,学生们结合直观图的观察,逐步发现分子比分母小的分数可以在一个单位“1”中表示,并且小于1;3.本节课最大的不足之处就是由于时间观念,把一节课的内容分开了,比如在教学中加入画一画内容可以加深学生从部分到整体的思维,使学生更近一步理解分数。
(三)、联系生活,学以致用。这一环节是引导学生将知识与生活联系起来,感受乘法口诀的使用价值,激发学生对乘法口诀运用的兴趣,培养学生数学思考的意识和能力。安排这一环节我设置了三个梯度的练习内容1、游戏“找气球”。请四位同学戴上写有得数的小兔、松鼠、小狗和刺猬的头饰扮演小动物去找要送给小熊的气球。让一些同学拿着气球式题卡片一起进行游戏。找对了,小熊请他吃红果(奖他红果卡片)其他同学检验结果的正确性,让他们感受发现的喜悦。(这是本节课所学知识的再现,需要所有学生都要掌握的。)2、游戏“开火车”。教师出示式题卡片让学生运用口诀解答。(这是运用知识解决问题,是对所学知识的灵活运用,需要中等以上学生掌握)3、联系生活,说一说运用4的乘法口诀进行计算的实例。
基于以上教学内容,我作了如下的教学设计:本节课以大量的数学信息作为主要线索,并通过以下活动实现教学目标。1、创设“农家小院”里大丰收的问题情境,引导学生寻找信息,整理信息,提出问题,分析问题和解决问题的过程,学习解决问题的方法,进一步巩固除法的意义。2、通过自主探究,发现乘除法能解决生活中的数学问题,引导学生建立“运用乘法、除法与“倍”的知识,分析问题和解决问题”的数学模型。3、运用所建模型,解决相关问题,并通过练习,让学生感受数学简捷思维的优势和广泛应用的价值。根据教学设计,我把本节课的教学目标定为以下几点:1、结合“农家小院”具体情境图的观察,让学生经历寻找信息,提出问题,分析问题和解决问题的过程,学习解决问题的方法,进一步巩固除法的意义。2、能够运用乘法,除法与“倍”的知识,分析问题和解决一些简单的实际问题,初步培养分析和解决问题的能力。
今天我说稿的题目是:北师大版二年级数学上册第单元第一课时的《长颈鹿和小鸟》。再此之前学生已经对6-9的乘法口诀非常熟悉了,而本节是让学生如何熟悉运用乘法口诀来求商及解决生活中的一些实际问题。基于对内容的理解和学生情况的掌握,我把本节课的教学目标定为:知识与技能:学习用乘法口诀求商,熟练并运用6—9的乘法口诀求商,体会除法与乘法的内在联系。过程与方法通过动手、动脑,重点提高学生的运算能力,培养学生的应用意识,以及用不同方法解决生活中简单问题的能力。态度与情感通过情境的设计激发学生学数学的内心需要,调动学生的积极性。为了更好的实现以上的教学目标,我把本节课的重点确定为:进一步体会乘、除法之间的关系,能比较熟练地应用6-9的乘法口诀求商。同时,把除法知识在生活中的灵活运用以及估算的实际运用作为本节的难点。
第三步、运用模型、解决问题。1.在巩固应用阶段我力求实现分层教学,力求在这一阶段体现不同的人学习不同的数学,不同的人在数学上有不同的发展。尤其注意小鸟回家这一环节的设计。在这一环节我设计了一个“小鸟回家”的游戏,找4位学生扮演房子,14为学生扮演小鸟,这时电脑播放小鸟的叫声,问学生:谁在叫?原来是小鸟找不到家了,你愿意帮助他们吗?孩子们说“愿意”,何时让小鸟根据房子身上的乘法口诀找到自己的家,下来我问学生是不是所有的小鸟都找到家了。这时有两只小鸟没有归宿,我们来帮它们建立一个新家吧,于是从积极热心帮助他人的角度引导学生帮助小鸟建立新家,从而拓展知识,适当进行思想教育。然后让学生汇报,并及时进行评价.2.接着带领同学接着玩“动物赛跑”的游戏,旨在锻炼孩子们的小组合作意识,用一些儿童喜闻乐见的游戏形式来巩固用乘法口诀求商的方法。
今天我说课的内容是:小学二年级数学上册第五单元“2—5的乘法口诀”的第5课时《回家路上》。本节课是在已有知识与经验的基础上,让学生进一步体验乘法,掌握“用2-5的乘法口诀解决问题”,意在培养学生建立、运用数学模型来解决相关问题能力,从而让他们感受到数学知识与生活实际的联系。基于以上教学内容,我作了如下的教学设计:本节课是在完成了“2---5的乘法口诀”的基础上,使学生学会“用2-5的乘法口诀”解决问题。以回家路上作为主要线索,并通过以下活动实现教学目标。1、创设“回家路上”的问题情境,引导学生提出本节课的一些数学问题。2、通过自主探究,引导学生建立“用乘法口诀解决问题”的数学模型。3、运用所建模型,解决相关问题,并通过练习,让学生感受数学简捷思维的优势和广泛应用的价值。
根据教师之前对课标及本课教材内容的分析,教师认为本课的教学重点应该是,结合课间活动的具体情境,进一步巩固2和5的乘法口诀,通过图与式的对应,进一步理解乘法的意义。教学难点是发展学生对乘法的认识,包含在教学重点之中。教学重难点的突破,教师准备围绕教材所设计的四个侧重点不同的问题,以教材的第一个问题——图与式的对应(数形结合、逆向思维)、第二个问题——根据数学信息解决实际问题(正向思维),逆正两种思维方式帮助学生理解巩固乘法的意义,同时,在解决教材的第三个问题“一共有多少盆花”后,帮助学生初步认识到乘法的局限性——不能解决加数不相同的几个加数的和。在学生知道了乘法的能和不能,进一步界定了乘法概念的内涵后,通过认知发散,找一找自己课间活动中能用乘法解决的问题,帮助学生将对乘法的认知扩展到日常生活的应用层面,从而达到其对乘法的进一步理解的目的。同时,随着这四个问题的解决,5、2的乘法口诀也在计算中得到了练习巩固。
三、教法和学法要实现上述教学目标,必须考虑教法和学法。课程标准指出:“有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。”本着“以学定教”的理念,我先来说说本节课的学法。1、学法本节课的内容是掌握乘法解决实际问题的方法,为了让学生能够较好地理解知识点,掌握方法,我在教学中安排了(动手操作、自主探索、合作交流、创新学习等交给学生观察的方法,目的是为了激发学生学习数学的兴趣,提高自信心。2、教法数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,因此在教学中我力求展现获取知识和方法的思维过程。最后我来说一说这一堂课的教学过程:
一、说教材教材分析:《快乐的动物》一课是北师大版小学数学第三册46-47页上的内容。本节课是学生接触“倍”的概念的第一课。对于低年级的孩子来说“倍”这个概念是比较抽象的,但却非常重要。记得去年教二年级的时候,这块内容学生掌握得不是很好,在复习时,学生对倍的概念比较模糊,不知道什么时候该用乘法,什么时候该用除法,所以上这一课时应该特别认真。从教材编写体系看:教材首先展示了一幅春天动物王国欢聚图的情景,图中蕴含着各种动物的数量以及数量之间的关系。其次,是编排了“做一做”、“说一说”的内容。其目的是让学生在具体的活动中,感受“倍”的含义,使学生逐步体会与等分之间的关系。求倍数的关系,涉及两个量之间的比较,实际上是等分活动的扩展。教材“说一说”中的第三个小问题:“你还能提出哪些用除法解决的问题?”给学生创设了充分的观察、探究、体验、交往的空间。这是本节教材的一个特色。“倍”是生活用语,
我说课的内容是北师大版义务教育课程标准试验教科书数学第三册第16页《需要几个轮子》。本课是在学生学习了5和2的乘法口诀的基础上进行3的乘法口诀的学习的。教学时,可组织学生借助摆三角形的活动编出3的乘法口诀。学生已经学了5和2的乘法口诀,已经掌握了一些编口诀的诀窍,所以3的口诀可以由学生自己整理。较多的时间应用在熟练口诀和算式上。因此,本节课的教学目标确定为:1、知识目标:结合“需要几个轮子”的具体情境,经历3的乘法口决的编制过程,会用三的乘法口决进行表内乘法的口算,能够发现乘法口决的排列规律。2、能力目标:培养学生归纳总结和知识迁移的能力,发展学生自主学习的能力。3、情感目标:培养学生[此文转于斐斐课件园FFKJ.Net]合作学习意识,体验数学与日常生活的关系。