提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

学校校长在2023年全校班主任工作会议上的讲话范文

  • 北师大初中八年级数学下册因式分解教案

    北师大初中八年级数学下册因式分解教案

    解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.

  • 北师大初中八年级数学下册中心对称教案

    北师大初中八年级数学下册中心对称教案

    探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.

  • 北师大初中九年级数学下册垂径定理教案

    北师大初中九年级数学下册垂径定理教案

    方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.

  • 北师大初中九年级数学下册第一章复习教案

    北师大初中九年级数学下册第一章复习教案

    一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。

  • 北师大初中九年级数学下册二次函数1教案

    北师大初中九年级数学下册二次函数1教案

    (2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.

  • 北师大初中九年级数学下册二次函数2教案

    北师大初中九年级数学下册二次函数2教案

    4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  • 北师大初中九年级数学下册圆教案

    北师大初中九年级数学下册圆教案

    解析:首先求得圆的半径长,然后求得P、Q、R到Q′的距离,即可作出判断.解:⊙O′的半径是r= 12+12=2,PO′=2>2,则点P在⊙O′的外部;QO′=1<2,则点Q在⊙O′的内部;RO′=(2-1)2+(2-1)2=2=圆的半径,故点R在圆上.方法总结:注意运用平面内两点之间的距离公式,设平面内任意两点的坐标分别为A(x1,y1),B(x2,y2),则AB=(x1-x2)2+(y1-y2)2.【类型四】 点与圆的位置关系的实际应用如图,城市A的正北方向50千米的B处,有一无线电信号发射塔.已知,该发射塔发射的无线电信号的有效半径为100千米,AC是一条直达C城的公路,从A城发往C城的客车车速为60千米/时.(1)当客车从A城出发开往C城时,某人立即打开无线电收音机,客车行驶了0.5小时的时候,接收信号最强.此时,客车到发射塔的距离是多少千米(离发射塔越近,信号越强)?(2)客车从A城到C城共行驶2小时,请你判断到C城后还能接收到信号吗?请说明理由.

  • 北师大初中九年级数学下册正切与坡度2教案

    北师大初中九年级数学下册正切与坡度2教案

    教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:

  • 北师大初中九年级数学下册正弦与余弦1教案

    北师大初中九年级数学下册正弦与余弦1教案

    解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,锐角的正弦值随着角的增大而增大,∴sin70°>sin20°=cos70°.故选D.方法总结:当角度在0°cosA>0.当角度在45°<∠A<90°间变化时,tanA>1.变式训练:见《学练优》本课时练习“课堂达标训练”第10题【类型四】 与三角函数有关的探究性问题在Rt△ABC中,∠C=90°,D为BC边(除端点外)上的一点,设∠ADC=α,∠B=β.(1)猜想sinα与sinβ的大小关系;(2)试证明你的结论.解析:(1)因为在△ABD中,∠ADC为△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函数的定义可求出sinα,sinβ的关系式即可得出结论.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法总结:利用三角函数的定义把两角的正弦值表示成线段的比,然后进行比较是解题的关键.

  • 北师大初中九年级数学下册正弦与余弦2教案

    北师大初中九年级数学下册正弦与余弦2教案

    [教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.

  • 人教部编版七年级下册孙权劝学教案

    人教部编版七年级下册孙权劝学教案

    (所有扮演吕蒙的学生举手,老师任选学生回答问题)预设 ①多读书能拓宽视野,丰富知识。②自己先天基础差,能力不足,就要靠后天的努力学习来争取进步。③用心听取别人的建议,并努力去做到最好。师小结:感谢三位接受我的采访!吕蒙先生的话让老师想起了冰心的名言:读书好,好读书,读好书。同学们,让我们与书籍同行,打好人生的基础;让我们以博览为志,拓宽视野。“腹有诗书气自华。” “问渠那得清如许?为有源头活水来。”愿同学们在知识的海洋里乘风破浪,扬帆远航!【设计意图】本环节采用记者采访的活动形式,由课内延伸至课外,最大限度地激发学生学习的兴趣。学生在活动中,不仅可以探究文章主题,更能切身体会到学习的重要性。四、布置作业1.课后自己整理、积累相关的文学常识和文言词语。2.比较阅读。通过比较《孙权劝学》和《伤仲永》,深化对课文内容的理解。

  • 人音版小学音乐二年级下册中国少年先锋队队歌说课稿

    人音版小学音乐二年级下册中国少年先锋队队歌说课稿

    (四)、学唱歌曲,升华体验我先进行范唱,让学生寻找最能体现少先队员“不怕困难,奋发向上”精神的句段,反复学唱。然后,我弹奏钢琴,学生跟着琴声演唱歌曲。之后我引导学生听辨歌谱中“不怕困难???”这一句中的休止符唱法,感受这个干脆利落的音乐符号所表现出队员的坚定信心,英勇果断,不畏一切艰难险阻的品质。学生轻松地学会了歌曲第一段,并较好地突破了感受乐曲情绪的教学难点。(五)、了解历史,内化情感这一环节采用了互动交流的方式让学生观看儿童电影《英雄小八路》的精彩片段,了解《中国少年先锋队队歌》的历史背景,激发自己是一名光荣的少先队员的自豪感。在《中国少年先锋队队歌》音乐声中,学生自豪地踏着坚定有力的步伐离开教室,结束本课的教学。

  • 人音版小学音乐四年级下册我是少年阿凡提说课稿

    人音版小学音乐四年级下册我是少年阿凡提说课稿

    紧接着是升记号的认识。在这里我把升记号介绍给学生,教师先用电子琴演奏没有升记号的乐句,再演奏有升记号的乐句,学生听一听那一个音有变化。然后教师再分别把单独的有变化的一个音拿出来进行比较,最后用键盘图在幻灯片上展示。使学生更直观的去听去感受,使学生听觉与视觉互补。增强学生的参与意识,使复杂乏味枯燥的音乐知识变的趣味化,生动化,通过师生的共同参与,更加拉近了教师与学生的距离。最后是编创与活动.由于这首歌是以环保为主题,所以我用音乐与环境保护有机结合的融合,从而进行德育渗透,通过生生合作、和自主探究的方式来进行编创歌词。最后让学生用载歌载舞的形式表现歌曲.依托音乐本身的魅力培养学生主动学习,合作意识,探究精神,从目标的提出到过程的安排,学习方法的确定乃至学习成果的呈现,都让学生有更大的自主性,更多的实践性,更浓的创造性。

  • 不忘初心牢记使命主题调研报告3篇

    不忘初心牢记使命主题调研报告3篇

    一是理论学习态度不够满正,缺乏对理论学习重要性的认识,不能够从提高修养,推动工作的高度去对待,缺乏思想上的刻苦性,不愿做深入细致的思考;缺乏行动上的紧迫感,不愿太下功夫去学习,导致学习的能力不足。  二是政绩观存在偏差,不能正确处理上级满意与对下负责之间的关系,想问题、干工作图“领导高兴,上级肯定”的多,顾“人民拥护、基层欢迎”的少,存在功利主义的思想。

  • 不忘初心牢记使命主题调研报告

    不忘初心牢记使命主题调研报告

    1、领导班子意见情况  当前,企业职工思想主流是好的,用心的,进步的,能够较好完成交代的任务。但也存在一些不稳定的因素,因公司长期处于停产停建状态,有些员工有麻痹懈怠思想,积极性不高。用心向上精神不够,敬业精神缺乏,影响其他工作进一步开展。企业员工的思想教育工作需要加强,企业精神文明建设要落地生根。

  • 主题教育“四下基层 ”经验做法阶段性总结

    主题教育“四下基层 ”经验做法阶段性总结

    四、现场办公下基层。推动现场办公下基层,着力解决好人民群众最关心最直接最现实的问题,是该区对领导干部在主题教育中“重实践”“建新功”的硬性要求。调查研究现场办公。区县级及以上领导在开展调查研究过程中,对现场能解决的问题及时协调解决。截至目前,通过开展调查研究现场办公解决的问题32个。深入企业现场办公。强化服务意识,持续优化营商环境,牢固树立“一切围绕企业、一切为了企业、一切服务企业”的理念,加强与企业的沟通联系,积极做好企业帮扶工作,主动深入挂点企业及在建项目,宣传相关惠企政策,针对企业生产所存在的问题,现场协调解决。截至目前,帮助企业协调解决用电、供水、招工等问题87个。“民事直达”现场办公。结合全区工作实际,研究制定了工作方案,通过“说事”“办事”“回访”三个环节,及时回应和解决广大人民群众急难愁盼问题。以每月15日召开的“民事直达”现场会为抓手,对群众诉求简单、村(社区)有能力解决的小矛盾、小纠纷、小问题,现场及时处理、当场反馈结果,切实做到小事不出村(社区)。截至目前,现场处理相关事情21件,得到了涉事群众的好评。

  • 主题教育经典经验做法、亮点特色总结

    主题教育经典经验做法、亮点特色总结

    以“一竿子插到底”的精神,用“望、闻、问、切”四诊法深入开展调研,真正做到把情况摸清、把问题找准、把对策提实。一是“望”实情。领导干部带头深入一线,突出重点望“问题”、望“不足”。二是“闻”民意。以“四不两直”方式深入一线,综合运用座谈访谈、随机走访、问卷调查、统计分析等多种形式,做好“倾听者”,架起“连心桥”,确保有多样的渠道、足够的样本数据、广泛的覆盖面。三是“问”良策。紧紧围绕主题教育,认真开展“三问”,即问计于民、问需于民、问效于民,广泛汲取群众智慧,认真收集梳理意见建议。四是“切”症结。在深入开展调研过程中,把落脚点放在“事要解决”上,高度重视调研成果的运用和转化,以作风转变带动工作转变。对现场调研发现的突出问题进行精准把脉,及时制定问题整改方案,真正做到发现一处整改一处。坚持突出重点、分类推进,积极破解人民群众“急难愁盼”问题。

  • 主题教育“四下基层”经验做法阶段性总结

    主题教育“四下基层”经验做法阶段性总结

    四、现场办公下基层。推动现场办公下基层,着力解决好人民群众最关心最直接最现实的问题,是该区对领导干部在主题教育中“重实践”“建新功”的硬性要求。调查研究现场办公。区县级及以上领导在开展调查研究过程中,对现场能解决的问题及时协调解决。截至目前,通过开展调查研究现场办公解决的问题32个。深入企业现场办公。强化服务意识,持续优化营商环境,牢固树立“一切围绕企业、一切为了企业、一切服务企业”的理念,加强与企业的沟通联系,积极做好企业帮扶工作,主动深入挂点企业及在建项目,宣传相关惠企政策,针对企业生产所存在的问题,现场协调解决。截至目前,帮助企业协调解决用电、供水、招工等问题87个。“民事直达”现场办公。结合全区工作实际,研究制定了工作方案,通过“说事”“办事”“回访”三个环节,及时回应和解决广大人民群众急难愁盼问题。

  • 主题教育典型经验做法、亮点特色总结

    主题教育典型经验做法、亮点特色总结

    以“一竿子插到底”的精神,用“望、闻、问、切”四诊法深入开展调研,真正做到把情况摸清、把问题找准、把对策提实。一是“望”实情。领导干部带头深入一线,突出重点望“问题”、望“不足”。二是“闻”民意。以“四不两直”方式深入一线,综合运用座谈访谈、随机走访、问卷调查、统计分析等多种形式,做好“倾听者”,架起“连心桥”,确保有多样的渠道、足够的样本数据、广泛的覆盖面。三是“问”良策。紧紧围绕主题教育,认真开展“三问”,即问计于民、问需于民、问效于民,广泛汲取群众智慧,认真收集梳理意见建议。四是“切”症结。在深入开展调研过程中,把落脚点放在“事要解决”上,高度重视调研成果的运用和转化,以作风转变带动工作转变。对现场调研发现的突出问题进行精准把脉,及时制定问题整改方案,真正做到发现一处整改一处。坚持突出重点、分类推进,积极破解人民群众“急难愁盼”问题。

  • 主题教育总结、汇报、经验交流材料汇编(16篇)

    主题教育总结、汇报、经验交流材料汇编(16篇)

    舶集团将理论学习与深刻领悟、深入实践在xx工作期间x次到舶集团考察调研的指示批示精神紧密结合,创新用好政文化特色资源,引领D员干部守住“根”与“魂”、找准“位”与“责”,推动真信、真用。港口集团将学习贯彻对xx、对港口建设和国资国企改革发展的重要指示批示精神与港口业务提质增效密切结合,活学、活用。我省国资国企还突出带着问题学、知行合一学,把ZT教育与当前全省上下正在扎实开展的“三争”行动紧密结合,与国资国企改革发展工作统一起来,以问题为导向,深入调查研究,攻克发展难题,力争解好“方程式”、寻求“最优解”,以高质量发展成效检验学习成果。问题是时代的声音。如何对标世界一流企业价值创造、如何落实好新一轮改革重组和专业化整合、如何进一步优化布局“四大经济”领域全省国资国企深入查找分析在贯彻新发展理念、积极服务和融入新发展格局、推动高质量发展、破解国资“监管难、难监管”中的问题短板及其根源,拿出切实管用的具体措施,真正把ZT教育与中心工作统一起来。

上一页123...531532533534535536537538539540541542下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。