学会感恩国旗下讲话国旗下讲话老师们,同学们,大家早上好!今天,我讲话的题目是《学会感恩》让我们先来听两个小故事吧:故事一,一个喝父母血的人中央电视台5月30日的聊天节目报道了这样的一则新闻:农民陈帮顺有三个儿子,只有大儿子小良考上了大学.为了供应小良完成学业,年近50的陈帮顺和病弱的老伴不得不卖血换钱,连续6年,卖出的血量能装满两个汽油桶.然而,明知父母艰辛的小良自读大学后6年都没回家,整日沉迷于网吧,荒废了学业,直到被学校退学.当节目现场陈帮顺含泪呼唤时,满座学子无不为之动容,而做为当事人的小良竟然对事后千辛万苦找到他的央视记者说:我爸在电视台这么说我,他有病,他是一个残酷无情的人.......故事二,忘恩负义的人东北有一位孤寡老人,用自己三百多元的退休金和每天早出晚归拾荒所赚来的钱,同时资助三个家庭经济困难的大学生,每人每月50元.在他们求学的几年中,最多的一位共获得老人2100元资助,最少的一位也有1650元.他们取钱时,言辞也颇为动听.然而,毕业工作后,他们音信全无.
一、重要荣誉 年月市总工会颁发的“市母婴关爱室示范点”荣誉称;月县政府门户网站代表县参省委网办举办的网络安全应急演练,“优秀防守单位”通报表扬。 二、主要工作落成情况 一推进“放管服”改革工作情况 一是积极创新服务园区模式。为推进政务服务与产业链无缝对接,制定了《推进广东家居智造产业链政务服务“一件事一次办”施方案》,对家居智造产业链项目行“上门办理”“极简审批”“集成服务”,着力打造“一件事一次办”园区版。编制《高新区家居智造企业极简审批服务办事流程一本通》,形成“项目开工”“竣工验收”“企业开办”“企业纳税”“人力资源配置”“生产要保障”和“惠企政策兑现”个“一件事”。依托县政务服务大厅“园区事园区办”综合服务窗口,组建了园区上门“帮代办”服务专班,明确各职能单位分管领导和联络员,规范“帮代办”服务流程,通过“一对一”帮办代办服务,全力为企业提供“母亲式”服务。二是大力推进涉企经营许可事项告知承诺制。布县本级第一批项施告知承诺制的涉企经营许可事项清单,编制《县涉企经营许可告知承诺应手册》,一次性告知准予许可条件、应当提交料和期限、后续监管规则、违反承诺后果等要,共梳理行告知承诺的申料项占总料数量的,其中承诺后补料项,事后现场核查料项,现企业准营极简审批。今年已通过告知承诺方式共办理共场所卫生许可、小餐饮经营许可等事项余件,企业群办理业务从原来的“跑两趟、至少天办完”,变为“最跑一趟、当场领证”,跑动次数和审批时间分别压减、以上。
6、不断提升经办服务能力。推动医保政务服务事项网上办、一次办,进一步健全“好差评”制度,窗口办件好评率x%,连续x个月被市政务中心评为“优秀窗口”“优秀首席审批员”。7、加强两定机构管理。一是对市域内两定机构开展2022年度考评工作。二是做好日常结算审核,每月审核人员按x%的比例抽查病历与系统比对审核,发现问题及时反馈给医院督促整改到位。三是制定细则,组织定点医药机构每月进行自查自纠。四是科学编制2024年总额预算,结合我市城乡居民、城镇职工医保基金运行情况,编制了2024年医保基金总额预算方案。三、下半年工作打算1、规范两定机构医保协议管理。一是严格履行协议。督促各定点医疗机构对照总额预算额度、费用指标、协议规定的管理条款,制定医院内部基金管理制度、方案和管理目标,围绕总额费用进一步规范医疗服务行为,合理控制住院人次和住院次均费用。
有一次,我赶去朋友家玩,走着走着,我就发现对面的红绿灯变成了红灯,我不得不停下了脚步,等着等着,我等不及了,这时,我看到马路上没有车,心想:“我闯一次红灯吧。”就这样,我飞快地冲了出去,过了这个红绿灯,我心里有一种说不出来的快活。我走啊走,又走到了另一个红绿灯前,我想:再闯一次红灯吧。当我想像上次一样飞快的跑过马路时,一个叔叔抢在了我的前面,一场惨剧就在我的眼前发生了,这位叔叔刚到马路中央时一台车飞快的冲了过去“碰”,只见叔叔躺在地上,露出惊愕的表情,地下流了很多血,我看到了这一幕,定定的在原地呆着,直到绿灯亮时,我才呆呆地往前走,脑海里一直回想着刚才发生的那一幕。
(2有权对违反《计算机室管理制度》的人和事进行指正、并记录在案,必要时向学校领导报告。 2、 对使用计算机学生的要 (1)严守《校产登记制度》,计算机室所有设备系学校财产,不得携带出室或外借。 (2)计算机柜上钥匙共两套,一套交于学校统一管理,另一套学生自行保管。 (3)每台计算机都有编号,不得私自调换机位,一经发现停止上机。
三、游戏体验,感受合作1.玩过拔河比赛吗?先分工一二组为A组,三四组为B组,每组6人上来参加比赛,那应怎样选队员呢?指名回答(谁选?推荐什么样同学呢?)2.参赛同学该怎样做呢?商量商量。下边的同学也商量商量该做些什么?3.比赛就要开始了,想拿冠军吗?这是大家的共同目标。(板书:目标)4.冠军队留下,比赛前是怎样商量的?(板书:分工协作)有什么诀窍吗?(板书:齐心合力)下面的同学在做什么?所以你们也是冠军队的员。5.教师小结。四、联系实际,指导行为1.生活中有哪些事要齐心合力做的事吗?指名全班交流。2.小结。3.大人们是怎样合作的呢?(课件出示:千手观音视频,神七、地震救援等图片)教师解说千手观音视频,猜测神七有多少人参与了研究呢?4.小结。合作不仅是人多力量大,更是齐心合力、分工协作。
一. 量化考核办法 1. 考核对象:学生会全体成员 2. 本制度实行积分量化,每人每月基础分为10分,按考核量化标准给予相应加分,扣分。 3. 具体考核方法:各部干事考核由部长执行,每周把考核结果交给纪检部合算; 纪检部考核由其余部门和主席共同执行; 主席及各部部长考核由纪检部执行。
2、各项活动由主办部门根据实际情况商定所需的经费数额,做出书面报告,随活动方案上报分管主席及主席签字同意;再由生活部报团总支审批。 3、经团总支审批同意的经费方可报销,报销凭正式发票到生活部办理。 4、批准开支的经费,凭经费预算在活动开展前7天到生活部预支经费;在活动结束后的7天内收齐发票或收据到生活部统一进行报账工作。发票和收据金额总和应与所预支的经费相符,多退少补。
2、值班任务:接待来访人员,接受信息反馈,妥善保管电脑,做好值班登记(包括学生会各部门在该日进行的会议、活动),打扫办公室,遇到重大事情应立即报告主席或秘书长。 3、值班干部要注意保管办公室公共财物。 4、不能按时值班但能主动做好调班安排并提前报秘书处的,考勤记录作正常值班处理。主席团或秘书处对值班出勤作不定期检查,秘书处对出勤情况作定期整理,作为各部评优的一个考察方向.
强化社会综合治理,持续迭代升级“141”基层社会治理模式,深化“大综合一体化”行政执法改革,滚动开展安全生产和消防安全系列专项活动,将重点人员牢牢稳控在基层,确保亚运会平稳举办。持续深化“法亮调解室”“一村一警”等社会治理品牌,及时总结提炼全处面上基层治理的经验做法,最终以治理品牌进一步提升治理效果。(五)坚决打好民生改善攻坚战。深入推进扩中提底,加快村级“一事一议”项目建设和农民自建房审批,深化推进“共富工坊”,确保今年22个行政村全部完成经营性收入**万以上。以跨乡镇全域土地综合整治试点为契机,持续加快“百千万”整治项目进度,重点做好**村千亩方、*村百亩方、*村千亩方土地连片整治。健全保障体系,做好困难群众和困难儿童、残疾人等特殊群众兜底保障,持续在全处范围内推广“爱心卡”,推动居家养老服务中心完成迭代升级。坚持规划先行,10月前完成**村、**村、**村、**村规划方案评审,进一步优化村庄布局。
1、请自觉遵守计算机法规和计算机使用道德规范,不发布有损国家、学校或他人形象的言论(信息);不得访问不健康的网站。 2、爱护室内的所有设备,发现计算机有异常时,要及时向教师报告,软、硬件系统均由管理员进行维护和管理,严禁无关人员拆卸机器、修改系统设置。 3、严格遵守计算机操作规程,爱护多媒体设备,人为损坏,要照价赔偿并追究责任。
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
第十九条乙方有下列情形之一,甲方可以解除本合同:(一)在试用期间被证明不符合录用条件的;(二)严重违反劳动纪律或甲方依法制订的规章制度的;(三)严重失职,营私舞弊,对甲方利益造成重大损害的;(四)被依法追究刑事责任的。第二十条有下列情形之一的,甲方可以解除本合同,但应当提前30日以书面形式通知乙方:(一)乙方患病或非因工负伤,医疗期满后,不能从事原工作也不能从事由甲方另行安排的工作;(二)乙方不能胜任工作,经培训或调整工作岗位仍不能胜任的;(三)本合同订立时所依据的客观情况发生重大变化,致使本合同无法履行,经双方协商不能就变更劳动合同达成协议的。
(四)认真抓好林业灾害防控工作。一是保持森林防火平稳态势。出动宣传车辆300余次,发放森林防火、有害生物防治等宣传资料7000余份,AAA和抖音宣传森林防火投放60余万次,防火码APP应用率100%。开展野外火源治理及林区输配电设施火灾隐患排查8次,制止违规用火40余起,排查火灾隐患18处,均已整改,二是林业有害生物防治安全可控。开展5·12林草生物灾害防控宣传周活动。投入450万元开展美国白蛾飞机防治工作,共计作业面积40万亩,至6月6日,全部顺利完成。(五)壮大林业产业发展成果。一是抓住产业重点。重点发展林下种养殖和森林康养,目前已完成林下种植面积XX万亩,产值XX亿元;林下养殖面积XX万亩,产值XX亿元;森林景观利用5万亩,产值XX亿元。申报第九批省林业产业化龙头企业8家。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。