1、以情激情,介绍背景。教学伊始,我借助录像片段,再现情景,"1950年10月19日,中国人民志愿军开赴朝鲜战场,与朝鲜人民军并肩作战,朝夕相处了8年,结下了深厚的情谊。战争最终以正义和良知取得了胜利。1958年,最后一批志愿军离朝回国,中朝两国人民依依惜别。"学生如亲临现场,初悟离别之情,这样既为理解课文作了情感铺垫,同时揭示了课题。 2、以境激情,撞击情感。 本课紧紧抓住"再见了,亲人"这一抒发情感的主线进行情境的创设,再现两国人民话别的场景、离别的场面,升华学生的情感。 3、 以读激情,读中悟法。 在指导朗读时我引导学生走进人物内心,想象当时的场景,同时在朗读中体会反问句、感叹句在表情达意方面的作用。 我根据这篇课文情感饱满、段落相似的特点,先引导学生初感文本,把握情感基调;再让学生说说触动自己情感之弦的语句和事例;然后以读为本,自悟自得。 围绕着文章的题眼,我精心抽取了"再见了,亲人"这条深情而厚重的丝线,拨动学生的心弦,设计了"讲亲人、诵亲人、别亲人"的大写意、"叠加式"结构。
为城市居民提供休养生息的场所,是城市最基本的功能区.城市中最为广泛的土地利用方式就是住宅用地.一般住宅区占据城市空间的40%—60%。(阅读图2.3)请同学讲解高级住宅区与低级住宅区的差别(学生答)(教师总结)(教师讲解)另外还有行政区、文化区等。而在中小城市,这些部门占地面积很小,或者布局分散,形成不了相应的功能 区。(教师提问)我们把城市功能区分了好几种,比如说住宅区,是不是土地都是被居住地占据呢?是不是就没有其他的功能了呢?(学生回答)不是(教师总结)不是的。我们说的住宅区只是在占地面积上,它是占绝大多数,但还是有土地是被其它功能占据的,比如说住宅区里的商店、绿化等也要占据一定的土地, 只是占的比例比较小而已。下面请看书上的活动题。
二、作者介绍: 朱光潜(1897-1986),现代美学家、文艺理论学,笔名孟实、孟石,安徽桐城人。主要从事美学研究工作,致力于翻译西方美学名著,在批判继承美学遗产方面,作出了卓有成效的努力,他的《西方美学史》是中国第一部系统论述西方美学历史的著作。他的美学理论在中国当代美学流派中自成一派,影响甚大。主要代表作有:《文艺心理学》《谈美书简》《给青年的十二封信》等。 三、阅读课文,将重点词语划出。 作者对“咬文嚼字”这一概念重新作了界定,它在文中的内涵是什么?切层概括 现在大家在预习的基础上再粗读一遍文章,这一遍,先求得粗知大概。注意这样几个问题: 1、文章有几段?标出标号。 2、文章观点性的语段是第几段?作者主要的观点什么? 一句话概括出来。 师:好,粗读一遍,回答刚才我提出的两个问题。 生:文章共分8自然段。观点性语段在最后一段,作者主要的观点是:1、应该有运用文字所应有的谨严精神;2、文学是艰苦的事,只有刻苦自励,推陈翻新,时时求思想情感和语言的精练与吻合,你才会逐渐达到艺术的完美。 概括一下就是:1、应该有谨严精神;2、只有咬文嚼字,不断推陈翻新,追求思想感情和语言的精练与吻合,才可能达到艺术的完美。看一看朱光潜先生是怎样咬文嚼字的。
第三版块:深入研讨——领悟文明交通行通过“交通知识知多少”知识竞赛活动让队员们了解交通法规、遵守交通法规。通过法律的角度来告知队员们文明交通行的重要性。我中队祁思宇同学的家长在交警队工作,通过协调让他来活动课上进行发言,现身说法,通过身边的榜样来感染同学们。第四版块:快乐宣誓——品味文明交通行活动课上,通过快乐宣言这一环节,引导队员们更加深人的理解文明交通行的重要性。具体内容:1、中队长向全体队员发出号召:遵守交通法规,文明出行,践行社会主义核心价值观,做文明胜小人。2、与家长一起编写“文明交通行”歌谣,送给身边的朋友或者家人,做一名文明交通行的小小宣传员。在第四小队的同学们《祝你平安的歌声》中结束今天的活动课。
教材来源:此活动选材来源于生活。我们都知道,蔬菜是幼儿比较熟悉的。在秋天这个丰收的季节,蔬菜在生活中随处可见,且取材方便。它的品种非常丰富,但在日常生活中经常发现个别幼儿不爱吃蔬菜的现象。再结合主题活动《我们爱秋天》,因此,有必要使幼儿形成对蔬菜正确的认识,加深对蔬菜特征的理解,激发幼儿爱蔬菜的情感。我们认为,选择此教材有一定的季节性、必要性,就如《纲要》中所说,“既符合幼儿的现实需要,又有利于其长远发展;既贴近幼儿的生活,选择感兴趣的事物或问题,又有助于拓展幼儿的经验和视野”。因此,此活动来源于生活,又能服务于幼儿的生活。
一、说教材 1、教材分析 《彩色的雨》是一首优美动听、充满童真童趣的散文,它运用了比喻、排比、等修辞手法,描写了娃娃心中彩色的雨。散文中形象的把小雨点比喻成亮晶晶的象一粒粒透明的珠子,那黄色的、蓝色的雨衣,象一片片彩色的云,那绿色的、紫色的伞儿象一朵朵彩色的花,那一双双红雨鞋象一艘艘小红船,这些生动的比喻构成了一组组排比句,增添了散文的韵律美。同时,散文中把构成彩色的雨的雨衣、伞儿、红雨鞋在雨中的动态都描绘的有声有色,作品不仅画面感强,想象丰富,而且语言凝练,韵律和谐,有较强的音乐性,即乐意躺幼儿欣赏彩色的雨的美丽景色,又可以让幼儿欣赏散文的意境美、语言美,在这同时又能激发幼儿动手制作彩色的雨的强烈愿望,因此这篇《彩色的雨》适合大班幼儿进行教学。
二、说教学目标(Teachingobjectives)根据本教材的结构和内容分析,结合着年级学生的认知特点和心理特征,我制定了以下的教学目标:知识目标:能听、说、读短语及单词:……能运用……等进行口语交际。能力目标:能用英语交流……。情感目标:通过活动、游戏使学生产生学习英语的兴趣;让学生敢于、乐于开口,积极参与交流;并在学习的过程中,培养学生的合作意识和竞争意识
(一) 教学目的确定及理论依据:初中英语教学大纲明确指出 :“初级中学英语教学的目的是通过听、说读、写的训练,是学生获得英语基础知识和为交际初步运用英语的能力,激发学生的学习兴趣,养成良好的学习习惯,为进一步学习英语打好初步基础,发展学生的思维能力和自学能力。”本课的教学目的是:了解音乐的种类,并会用学过的英语语句表达自己对不同类型的音乐的喜好。
(一) 教学目的确定及理论依据:初中英语教学大纲明确指出 :“初级中学英语教学的目的是通过听、说读、写的训练,是学生获得英语基础知识和为交际初步运用英语的能力,激发学生的学习兴趣,养成良好的学习习惯,为进一步学习英语打好初步基础,发展学生的思维能力和自学能力。”本课的教学目的是:了解音乐的种类,并会用学过的英语语句表达自己对不同类型的音乐的喜好。这是遵循素质教育对课堂教学的要求,培养学生身心健康等诸多素质,促进学生全面发展。
2、目标定位:活动的目标是教育活动的起点和归宿,对活动起着导向作用。根据中班幼儿年龄特点及实际情况以及布卢姆的《教育目标分类学》为依据,确立了认知、能力、情感方面的目标,其中既有独立表达的成份,又有相互融合的一面,目标为:(1)培养幼儿喜欢蔬菜的情感,并在活动中乐于表现自己。 (2)通过实物、图片及对话识别所学单词。(3)能在所学单词前加上适当颜色。 根据目标,我们把活动重点定位于:通过实物、图片及对话识别所学单词。通过多媒体课件、歌曲引路、游戏体验及品尝蔬菜,使活动得到深化。活动的难点是:能在所学单词前加上适当颜色。通过教师示范和情景表演解决。 总之,我们树立了目标的整合观、科学观、系统观,力求形成有序的目标运作程式。使活动呈现趣味性、综合性、活动性,寓教育于生活情境、游戏之中。为此,我们作了如下活动准备:1、空间准备:把幼儿围成半圆形,操作台放于侧面。 2、物质准备:小熊毛绒玩具、创编歌曲、多媒体课件、各种蔬菜(如西红柿tomato、萝卜carrot、黄瓜cucumber、韭菜leek等)。3、经验准备:幼儿已经认识多种颜色,并对蔬菜有一定的经验(吃过或看过)。
2、文化反作用经济政治师:经济政治决定文化,那么,文化不是被动消极的呢?生:思考回答:文化反作用经济政治,不同的文化对经济政治的影响不同。师:文化反作用经济政治,对社会发展有重要影响。文化反作用表现在,文化可以为经济政治的发展,对社会的发展,提供方向保证、智力支持和精神动力。(1)文化反作用的体现。师:现代民主国家中,世界民主的先驱是英国,但英国却有国王,亚洲民主的先驱是日本,但日本却有天皇,其一个重要原因是文化的影响。这说明什么?生:思考发言……师:不同民族的文化,影响不同民族和国家的历史和发展道路。师:中东地区一直以来都是世界热点地区,如巴以冲突、伊拉克战争、阿富汗战争、基地组织等,其一个重要原因是宗教文化的冲突。这说明什么?生:思考发言……师:不同文化的冲突,影响社会的和谐安定和世界的和平安宁。
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。