提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

北师大初中八年级数学下册角平分线教案

  • 大班数学教案:分析图形特征

    大班数学教案:分析图形特征

    (二)活动准备:  1.教具:抽奖箱,抽奖券。   2.学具:幼儿奖卡、笑脸、作业纸、白纸条、勾线笔。   3.知识经验:抽奖。  (三)活动过程:  1、初步比较图形的不同。  师:(出示各种图形):“今天,老师给你们带来了许多奖卷。看,它们一样吗?那些地方不一样?” 小结:“对,它们大小不同,形状也不同。” 每一个小朋友选一个你喜欢的奖券吧。看一看,你的奖券是什么样的?  2、抽奖游戏,分析图形特征。  (1)抽三等奖,分析单一特征。   师:“这是抽奖箱,现在要开奖啦。先开三等奖。我来抽,会是谁中奖呢?(抽长方形)   “什么中奖啦?你怎么知道的?“对,这是长方形标记。表示所有的长方形中奖。   恭喜你们。送给你们一个笑脸娃娃。   还会有谁中奖呢?你们闭上眼睛,我抽出来看。等你们挣开眼,看到自己中奖的就站起来。

  • 初中英语人教版九年级全册《Unit 3 Could you please tell me where the restrooms are》课标分析说课稿

    初中英语人教版九年级全册《Unit 3 Could you please tell me where the restrooms are》课标分析说课稿

    学习策略的第五级标准分为认知策略和调控策略。认知策略方面,标准描述有:根据需要进行预习;在学习中集中注意力;在学习中善于记要点;在学习中积极思考,主动探究,善于发现语言的规律并运用规律举一反三。对于调控策略,其标准是这样描述的:明确自学习英语的目标;积极探索适合自己的英语学习方法;经常与老师和同学交流学习体会。

  • 小学数学人教版六年级上册《百分数整理与复习》说课稿

    小学数学人教版六年级上册《百分数整理与复习》说课稿

    一、说教材《百分数》是九年义务教育课程标准试验教科书人教版小学数学五年级下册第六单元的教学内容。百分数是在学过整数、小数,特别是分数的意义和应用的基础上进行教学的。本单元教材在编写上体现从实际情境中抽象出百分数的过程。让学生体会引入百分数的必要性和百分数的意义,感受百分数在实际生活中的应用。二、说学情学生已经认识了百分数,并掌握了百分数的简单计算和应用。生活中存在着较多的百分数,学生在生活中或有所见、或有所闻。如衣服上 80%棉、牛奶纯度 100%等等。这些为本节课的开展奠定了生活经验基础。

  • 小学数学人教版三年级上册《分数的简单计算》说课稿

    小学数学人教版三年级上册《分数的简单计算》说课稿

    一.教材分析(一)教材内容地位作用与学情《分数的简单计算》是人教版小学数学三年级上册P96~97第八单元中的分数的简单计算第一课时的内容。主要是简单同分母分数的加减法的计算,分数的简单计算是学生数与代数运算的一次扩展,是在学生之前学习认知了简单分数含义及其大小比较等知识经验的基础上开展教学的。也是学习异分母加减法等知识的基础。(二)教学目标基于以上教材理解分析和新课程标准“四基”、“四能”要求,拟将本课教学目标定位确立如下:知识与技能目标: 理解和掌握同分母分数加减法的算理和计算方法,能正确计算简单同分母分数的加减法,解决简单实际问题;过程与方法目标:让学生经历探究同分母加减法的计算方法的过程。培养学生的动手操作能力、逻辑思维能力、口头表达能力和计算能力。情感态度与价值观目标:让学生感受到数学来与生活的密切联系,培养增强数学兴趣。

  • 小学数学人教版六年级上册《运用分数除法解决实际问题》说课稿

    小学数学人教版六年级上册《运用分数除法解决实际问题》说课稿

    一.教材分析本节课是人教版六年级上册第38页例5,首先我对本节教材内容进行如下分析:本节课的教学设计力图体现“尊重学生,注重发展”,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与上一单元求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味。 二.学情分析:我对我班学生也做了比较详细的分析,我班有13名学生,人数不多,但对数学知识的学习两极分化比较严重,大部分学生对数学学习有着浓厚的兴趣,但也有一部分学生与其他学生差异较大,对数学学习缺乏信心,积极思考的习惯有待于培养。因此在本节教学中,我关注更多的是用学生已有的知识经验激发学生的兴趣。

  • 小学数学人教版三年级上册《分数的简单应用》说课稿

    小学数学人教版三年级上册《分数的简单应用》说课稿

    一、说教材《分数的简单应用》是人教版小学数学三年级上册第八单元的知识。教材安排主要是先让学生理解一个物体或者几个物体都可以当成一个整体进行平均分,会把一个整体平均分为几部分,选择其中的几部分。根据学生的生活经验和知识背景及课本的知识特点,本节课的教学目标定为:1、知识与技能:经历解决问题的过程,能根据分数的含义,利用整数乘、除法来解决问题。2、过程与方法:通过分一分、拿一拿,理解情境中的数量关系,探求解决求一个数的几分之几的方法.3、情感态度与价值观:感悟数形结合的思想,初步了解分数的在实际生活中的应用和价值。本课教学的重点是:引导学生根据分数含义分析数量关系,并用整数乘除法来解决问题。

  • 幼儿园大班科学教案: 路线

    幼儿园大班科学教案: 路线

    [活动准备]  纸飞机、竹蜻蜓、积木、彩纸、手工纸、蜡笔、作业纸、沙包 [活动过程]  一、引导幼儿发现物体在空中会自由下落1、幼儿自由玩竹蜻蜓和纸飞机,提出问题:竹蜻蜓和飞机开始在哪里飞行?最后又落在哪里?2、讨论:它们飞到天上,为什么会落下来?3、知识点:地球有引力,所以物体会落下来。4、所有的物体都会下落吗?

  • 幼儿园中班数学教案:按标记分类

    幼儿园中班数学教案:按标记分类

    2、通过“送图形宝宝回家”的游戏,根据图形的三个特征进行分类。   3、积极参与数学游戏,体验数学游戏的乐趣。  活动准备: 1、教具:大骰子三个,贴好标记。   2、学具:   (1)各种图形若干。   (2)贴有标记的小骰子人手三个,各种图形每组一份,人手一只小箩筐。   (3)贴有三个标记的大箩筐若干,连成一列火车。  活动过程:  一、来了一群图形宝宝,看有哪些图形宝宝?复习学过的图形。   教师在黑板上出示各种图形,请幼儿集体或个别回答,说出图形的名称和特征。   如:红颜色的三角形;黄色的正方形等等。要求幼儿能说出图形的特征。  二、帮图形宝宝找朋友。按三个特特征选择图形。   师:图形宝宝要去旅游,想请我们帮她们找朋友。怎么找呢?老师给小朋友准备了三个骰子,我们可以请骰子来帮忙。

  • 幼儿园中班数学教案-分花伞

    幼儿园中班数学教案-分花伞

    2、鼓励幼儿用自己的方式简单清楚地记录,发展幼儿的观察能力。3、引导幼儿清楚地表述自己的记录结果。重点:继续鼓励幼儿用自己的方式记录,简单清楚。难点:在老师的引导下清楚地表述自己的记录结果 设计思路:《幼儿园教育纲要》中指出,教育内容应“贴近幼儿的生活来选择幼儿感兴趣的事物和问题,有助于拓展幼儿的经验和视野”。前一段时间,一直是阴雨绵绵的天气,我班的孩子都带来了伞,并且议论着伞。我们知道,伞与我们的生活有着密切的关系,它的来历,发展过程、功能等都具有一定的探索价值和教育价值。因此我们根据纲要精神,及时利用这一资源,开展了主题“伞的秘密”的探索活动。果然,活动很快激发了孩子强烈的探索欲望。随后,他们的兴趣点集中在伞的特征上,他们发现了伞的许多不同,如:颜色、形状、图案、大小不同,伞的布料也不同等等。我想,在了解幼儿当前的兴趣、经验、需要以及现阶段非正式活动进行的分类内容,可以结合主题活动整合一些数方面的内容,因此我设计了本次正式活动——分花伞,帮助幼儿提升归纳分类的经验,发展幼儿的思维抽象能力。通过两次非正式活动和一次正式活动,幼儿已经初步能用自己的方式记录(尽量简单,让自己和别人都看得清楚),在本次活动中将继续提高使用表征符号的能力;另外,幼儿具有了一些分类的经验,在多重分类的基础上,开始向按物体的某一明显特征作肯定与否定的分类过渡。

  • 小学数学人教版三年级上册《毫米和分米的认识》说课稿

    小学数学人教版三年级上册《毫米和分米的认识》说课稿

    一、教材分析本课是人教版3年级上册数学第3单元的第1课时,本课内容是在学习了长度单位米和厘米的基础上进行教学的,通过学习,使学生对常用的长度单位有一个比较完整的认识,对于今后学习面积单位和体积单位,发展学生的空间观念具有重要意义。二、教学目标:根据对教材的理解,同时结合学生已有的认知结构和心理特征,制定如下教学目标:(1)、知识目标:认识长度单位毫米和分米, 初步建立1毫米和1分米的长度观念;知道1分米=10厘米,1厘米=10毫米,1米=10分米,并能进行长度单位间的简单换算。(2)、能力目标:通过估一估、量一量等活动,培养和发展学生的空间观念、估测能力、动手操作能力和推理能力。(3)、情感目标:经历实际测量的过程,体会长度单位在日常生活中的应用,感受数学和生活的密切联系,体验数学学习的乐趣。

  • 人教A版高中数学必修二平面与平面平行教学设计

    人教A版高中数学必修二平面与平面平行教学设计

    1.探究:根据基本事实的推论2,3,过两条平行直线或两条相交直线,有且只有一个平面,由此可以想到,如果一个平面内有两条相交或平行直线都与另一个平面平行,是否就能使这两个平面平行?如图(1),a和b分别是矩形硬纸板的两条对边所在直线,它们都和桌面平行,那么硬纸板和桌面平行吗?如图(2),c和d分别是三角尺相邻两边所在直线,它们都和桌面平行,那么三角尺与桌面平行吗?2.如果一个平面内有两条平行直线与另一个平面平行,这两个平面不一定平行。我们借助长方体模型来说明。如图,在平面A’ADD’内画一条与AA’平行的直线EF,显然AA’与EF都平行于平面DD’CC’,但这两条平行直线所在平面AA’DD’与平面DD’CC’相交。3.如果一个平面内有两条相交直线与另一个平面平行,这两个平面是平行的,如图,平面ABCD内两条相交直线A’C’,B’D’平行。

  • 初三誓师大会学生发言讲话稿3分钟

    初三誓师大会学生发言讲话稿3分钟

    三年前,我们怀着对未来的美好憧憬,带着家人与老师的殷殷期盼,兴奋地跨进了心仪已久的美丽的邗中校园。春来春去,杨柳依依,书写无悔年华;燕离燕归,白云点点,唱响人生奋斗的凯歌。微冷的春风淡去了烟尘与伤痛,沉淀在内心的,是缤纷的梦想和那收获前的耕耘与奋斗。蓦然回首,三年寒窗苦读,一千多个日日夜夜,铸就了我们必胜的信念与坚不可摧的意志。我们的目光,从来没有像今天这般坚定执着;我们的思想,从来没有像现在这般成熟饱满;我们的心灵,从来没有眼前这般激荡燃烧。

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

  • 两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 大班科学教案:光线能穿透物体吗

    大班科学教案:光线能穿透物体吗

    二、活动目标: 1.通过活动引导幼儿观察光通过不同物体产生的不同现象。 2.通过观察不同现象,能分析观察的结果。 三、适用对象: 5—6岁幼儿。 四、活动所需资源: 玻璃杯、水、牛奶、手电筒、易拉罐、玻璃、花玻璃、茶色玻璃、布、塑料布、磁带盒、饮料瓶、塑料桶、灯泡、书、纸、木板若干。 五、活动过程 1、想一想:什么能穿透玻璃杯? 2、手电简的光可以穿过玻璃杯。 3、探究的问题:光线能穿过哪种液体(水和牛奶)?

  • 倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    (2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).

上一页123...293294295296297298299300301302303304下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。