二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
三、作出速度-时间图像(v-t图像)1、确定运动规律最好办法是作v-t图像,这样能更好地显现物体的运动规律。2、x y x1 x2 y2 y1 0讨论如何在本次实验中描点、连线。(以时间t为横轴,速度v为纵轴,建立坐标系,选择合适的标度,把刚才所填表格中的各点在速度-时间坐标系中描出。注意观察和思考你所描画的这些点的分布规律,你会发现这些点大致落在同一条直线上,所以不能用折线连接,而用一根直线连接,还要注意连线两侧的点数要大致相同。)3、若出现了个别明显偏离绝大部分点所在直线的点,该如何处理?(对于个别明显偏离绝大部分点所在直线的点,我们可以认为是测量误差过大、是测量中出现差错所致,将它视为无效点,但是在图像当中仍应该保留,因为我们要尊重实验事实,这毕竟是我们的第一手资料,是原始数据。)4、怎样根据所画的v-t图像求加速度?(从所画的图像中取两个点,找到它们的纵、横坐标(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直线的斜率。在平面直角坐标系中,直线的斜率
3、若出现了个别明显偏离绝大部分点所在直线的点,该如何处理?(对于个别明显偏离绝大部分点所在直线的点,我们可以认为是测量误差过大、是测量中出现差错所致,将它视为无效点,但是在图像当中仍应该保留,因为我们要尊重实验事实,这毕竟是我们的第一手资料,是原始数据。)4、怎样根据所画的v-t图像求加速度?(从所画的图像中取两个点,找到它们的纵、横坐标(t1,v1)、(t2,v2),然后代入公式,求得加速度,也就是直线的斜率。在平面直角坐标系中,直线的斜率四、实践与拓展例1、在探究小车速度随时间变化规律的实验中,得到一条记录小车运动情况的纸带,如图所示。图中A、B、C、D、E为相邻的计数点,相邻计数点的时间间隔为T=0.1s。⑴根据纸带上的数据,计算B、C、D各点的数据,填入表中。
一、启发谈话 同学们,我们的家乡是个美丽神奇的地方,它的山山水水养育了我们,根据你们的调查,家乡有了那些变化,其中那些给你留下了深刻的印象。这节课,我们先交流,然后把交流的内容写下来。 二、从兴趣入手,多角度观察 自由组合,交流学习 学生自由组合,将采访、收集到的资料在组上进行交流,然后,选出代表在班上交流。 环境生活工业 多角度观察农业、旅游、饮食、交通
(现状:①对于教员,不能以诚相待,礼敬有加,只是利用耳。2段:因做官心切,对于教员,则不问其学问浅深,唯问其官阶之大小。官阶大者,特别欢迎,盖唯将来毕业有人提携。②对于同学校友,不能开诚布公,道义相勖。)他的第三点要求是,要求青年学子。这是从个人涵养方面来说的。尊敬师长,团结友爱,互相勉励,共同提高,是建设良好校风必须具备的条件。端正学风,改善校风,就是为培养学术研究新风气创造条件。全校上下树立了新风尚,学校的学术气也就会很快浓起来。这也是贯彻“思想自由”的办学方针,不可或缺的措施。蔡元培先生在他这次演讲中,始终是围绕着他的办学方针来阐述的。(四)蔡先生提出两点计划,目的为何?思考、讨论、明确:一曰改良讲义,以期学有所得,能裨实用。
蔡元培的道德风范和人格力量,具有震撼人心的作用,深为世人所钦仰。“人世楷模”“善良的社会和庄严的人生的模范”(国立音乐专科学校师生1936年1月《祝蔡孑民先生千秋诗》)的赞誉,对他来说绝非溢美之词。任鸿隽称他具有“处处为人无我的真精神”;“对人接物,似乎有两个原则,一个是尊重他人的人格,决不愿意以自己的语言和行动使人感到一点不快或不便,一个是承认他人的理性,以为天下事无不可以和平自由的方法互相了解或处理。”“但在公义一方面,蔡先生却是特立不屈、勇往直前、丝毫不退、毫不假借的斗士。”(重庆《中央日报》1940年3月24日)他的学生冯友兰也回忆说,在蔡先生身边,感同光风霁月,他的人格能造成一种气象。沐浴在这种气象之中,就不能不为他的人格所感化。蔡元培身居高位,一生廉洁,自奉俭朴,直至晚年仍是全家租赁房屋居住,他酷爱的书籍也分散在北平、上海、南京、杭州等地,没有一个归拢庋藏的地方。蔡元培这种真诚待人、无私奉献、光明磊落的精神,源于他对国家、对民族、对事业、对学生深深的眷恋和崇高的责任感。他的这种浩然正气和高尚道德情操,至今仍是公务人员的楷模。
中华民族的脊梁各位老师、同学们:大家早上好!很荣幸能代表高233班在国旗下讲话,今天,我演讲的题目是《中华民族的脊梁》。登上昆仑,才知道什么叫高峻,来到虎门才懂得什么叫雄伟。翻开中国近代史这幅长长的画卷,聚集了多少哀愁,多少屈辱、多少痛苦,这些哀愁、屈辱、痛苦比黄河还要曲折,比大海还要苦涩,南京大屠杀,三十万生命无一幸存。“处处扼咽喉,天涯何处是是神州?”堂堂中华民族在侵略者的铁蹄下呻吟。“凉该读尽支那史,几个男儿非牛马?”面对面山河破碎,国将不国,灾民流离,哀鸿遍野的现实,为什么中华民族的强国梦难以实现,痛心疾首之余,我们需要认真想一想,这是为什么?中华民族的希望在哪里?人们在漫漫长夜,盼望着、等待着……这一天终于来了!
食品安全记心间同学们:炎热的夏天到了,“民以食为天,食以安为先”,食品安全问题涉及到每个人的身体健康和生命,不安全的隐患就在我们身边。同学们,你们是祖国的花朵,是祖国的未来,是早上八九点钟的太阳,是祖国发展和平富强的希望;你们每天吃的方便面是合格食品吗?每天吃的肉类是符合卫生标准食品吗?每天喝的矿泉水饮料是在有效保质期之内吗?每天吃的面包有厂名、厂址、生产日期、合格证吗?妈妈每天给你喝的牛奶有qs标志吗?有些人在平时吃到、买到的食品只是没有留心注意到这些。那么在平时日常生活中吃到、买到不合格食品应该向谁投诉举报呢?带着这些在我们自己身边日常生活中经常遇到的食品安全的小问题,借此机会给大家讲一讲食品安全方面的知识。1、什么叫食品安全?食品安全(foodsafety)指食品无毒、无害,符合应当有的营养要求,对人体健康不造成任何急性、亚急性或者慢性危害。根据世界卫生组织的定义,食品安全是“食物中有毒、有害物质对人体健康影响的公共卫生问题”。食品安全也是一门专门探讨在食品加工、存储、销售等过程中确保食品卫生及食用安全,降低疾病隐患,防范食物中毒的一个跨学科领域。
生命选择的态度是什么使我们知对错,是什么使我们明得失,漫漫人生路,有着太多的选择,是对错让我们知道不要轻率的选择;是得失让我们明白不要轻易言“不”。人是在得失与对错过程中成长的,诸多人生都需走过前车之辙方能懂得前车之鉴,即使我们可以不像秦人一样不暇自哀,而做后人哀之,即使这样又能有多少真正去哀之而鉴之的人呢?这便是我们人性的弱点,所以在我们的人生里,总是被这些哀之而困,不鉴之而苦,终日在悔恨中碌碌无为,虚度漫长而又短暂的人生路。人生的毁灭与成败有着太多的挑战,有人为了成败而选择毁灭,有人宁可毁灭而不愿接受失败,这是生活者的态度,人生有着人性的坚韧和生命的卑微的区别,但若要在失败与毁灭的选择时,我们无论处于失败还是毁灭,生命无论何等的卑微,还是人心何等的坚韧,我们都要向着选择高呼,我不会轻率地选择,也不会轻易言“不”。
扬起自信的风帆各位老师,同学们:大家早上好!今天我演讲的题目是《扬起自信的风帆》。自信,是走向成功的伴侣,是战胜困难的利剑,是达向理想彼岸的舟楫。有了它,就迈出了成功的第一步,有了它,就走上了义无反顾的追求路。曾几何时,刘邦、项羽目睹秦始皇浩浩荡荡的出游队伍、富丽华美的车帐、八面凛凛的威风,随生雄心万丈的自信:“大丈夫当如此也”,“彼可取而代也”。于是,汉高祖立千秋帝王大业,楚霸王成万古悲壮英雄。诗人李白自信,他发也了“天生我才必有用,千金散心还复来”、“仰天大笑出门去,我辈岂是蓬蒿人”的浩叹,便有壮丽辉煌的诗章千古流传。巴尔扎克自信,放弃家人为他选定的职业,毅然走上创作道路,终有惊天动地的《人间喜剧》彪炳千秋。一代伟人毛泽东更自信,他高唱“自信人生二百年,会当击水三千里”、“数风流人物,还看今朝”,万水千山,披荆斩棘,铸造了共和国的辉煌,带来了亿万人民的幸福-------
理想的三个风向标理想就像阶梯,帮助我们向着光明的未来攀登,理想就像指南针,帮助我们寻找人生的方向。一个人如果没有了理想,就像没有羽翼的雏鹰一样,怎么能向着美好的未来支展翅飞翔呢?理想,这座人生的指示灯一但失去了,我们怎么能在茫茫中前行呢?因此,每个人都应该有自己的理想。只有拥有了坚定的远大理想,才不会在生活的汪洋大海中失去前行的希望与方向。周恩来同志曾立志:为中华崛起而读书。托尔斯泰将人生的理想分成了一辈子的理想,一阶段的理想,一年的理想,一个月的理想,甚至一天,一小时,一分钟的理想,此时此刻,同学们,你们是否想到了自己的理想了呢?
一、 创设情景,导入新课。教师简单介绍八孔竖笛的种类;并富有表情的范奏竖笛曲目《可爱的家》,激发学生学习竖笛的兴趣。二、 新课教学:1、教师介绍竖笛的起源,播放国外竖笛演奏视频。2、教师简介八孔竖笛的两种演奏体系;并教给学生区分德式和英式竖笛的方法。(德式竖笛是从上往下数第五孔为小孔;而英式的竖笛则是从上往下数第四孔为小孔。)3、师简介八孔竖笛的构造、发音原理。师:我们要学习吹奏的高音八孔竖笛,是一种从顶端吹奏的小型哨嘴笛,分为笛头、笛身、笛尾三个部分。它音色柔和、甜美,可任意转调富有歌唱性。4、学习吹奏八孔竖笛的姿势:(1)持笛方法:左手在上,右手在下,左手拇指按住笛身背面上方孔为背孔,左手食指、中指、无名指按1、2、3孔。右手大拇指持笛身,食指、中指、无名指、小指按4、5、6、7孔。(教师边讲解边示范,边指导学生练习)
动准备:1. 幼儿用书人手一册。 2. 红色笔人手一支。 3.红花若干。活动过程: 1. 教师讲述故事《乖乖睡觉》。 乖乖是个小女孩,她很聪明也很能干,就是胆小,每次睡觉都要妈妈陪。一天,妈妈出门去了,乖乖一个人躺在床上,她哭起来:“妈妈来拍乖乖睡觉……”住在山那边的熊妈妈听到了,赶过来一看,原来是乖乖不愿一个人睡觉。熊妈妈说:“乖乖,我来拍你睡觉吧。”熊妈妈就伸出大手,“啪啪,啪啪”地拍了起来,可是只听到“嘶啦----”一声,被子被熊妈妈拍破啦。熊妈妈难过地说:“唉,我的小熊宝宝从来不要我拍,都是自己睡觉的。”乖乖听了,很不好意思地红了脸。她对熊妈妈说:“我也长大了,我也会自己睡觉,我不要妈妈拍了。”
一、活动目标:1、能结合自己的生活经验,合作制定合理的旅游计划表,并按计划准备合适的旅游物品。2、在合作探索中体验活动的乐趣。二、活动准备:1、空白计划表3张、范例1张,“团长”牌3张。2、开飞机VCD,新疆、西藏、北京风光图片。3、旅游食品、用品、药品、旅行包、旅行帽、导游旗等物品。三、活动过程:1、激发旅游愿望。我们要准备去旅游,旅游公司为我们提供了三条旅游线路,它们是新疆、西藏、还有北京,你们去看这三个地方的图片介绍,看完后互相讨论一下,你们准备和谁一起去哪条线路旅游,你们再选一个旅游团团长。
活动目标: 1.幼儿在互相的交流中,了解老人们年纪大了,做很多事情存在着种种不便。 2.激发幼儿尊敬老人、关爱老人的情感。 前期经验的准备: 让幼儿观察和讨论爷爷奶奶的日常活动。 物质准备: 收集有关爷爷奶奶日常生活细节的信息(图画、文字记录)。 环节预设: 一.出示爷爷奶奶图片,自然引入主题。 师:说说自己的爷爷奶奶长得什么样子,和自己哪些地方不一样。 幼儿自由讲述。 师:我们的爷爷奶奶年龄大了,需要我们的小朋友来帮忙。
二、活动目标:1.知道自然灾害对人类的危害,学习解放军叔叔的抗洪精神。2.激发幼儿对灾区人民的同情心,产生帮助他们的愿望。 三、活动准备 录像一:洪水情景 录像二:解放军抗洪救灾的情景 录像三:人们捐款、捐物献爱心的场面。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。