一、教学目标(一)知识教育点使学生掌握抛物线的定义、抛物线的标准方程及其推导过程.(二)能力训练点要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力.(三)学科渗透点通过一个简单实验引入抛物线的定义,可以对学生进行理论来源于实践的辩证唯物主义思想教育.二、教材分析1.重点:抛物线的定义和标准方程.2.难点:抛物线的标准方程的推导.三、活动设计提问、回顾、实验、讲解、板演、归纳表格.四、教学过程(一)导出课题我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.首先,利用篮球和排球的运动轨迹给出抛物线的实际意义,再利用太阳灶和抛物线型的桥说明抛物线的实际用途。
教学目的:理解并熟练掌握正态分布的密度函数、分布函数、数字特征及线性性质。教学重点:正态分布的密度函数和分布函数。教学难点:正态分布密度曲线的特征及正态分布的线性性质。教学学时:2学时教学过程:第四章 正态分布§4.1 正态分布的概率密度与分布函数在讨论正态分布之前,我们先计算积分。首先计算。因为(利用极坐标计算)所以。记,则利用定积分的换元法有因为,所以它可以作为某个连续随机变量的概率密度函数。定义 如果连续随机变量的概率密度为则称随机变量服从正态分布,记作,其中是正态分布的参数。正态分布也称为高斯(Gauss)分布。
教学准备 1. 教学目标 知识与技能掌握双曲线的定义,掌握双曲线的四种标准方程形式及其对应的焦点、准线.过程与方法掌握对双曲线标准方程的推导,进一步理解求曲线方程的方法——坐标法.通过本节课的学习,提高学生观察、类比、分析和概括的能力.情感、态度与价值观通过本节的学习,体验研究解析几何的基本思想,感受圆锥曲线在刻画现实和解决实际问题中的作用,进一步体会数形结合的思想.2. 教学重点/难点 教学重点双曲线的定义及焦点及双曲线标准方程.教学难点在推导双曲线标准方程的过程中,如何选择适当的坐标系. 3. 教学用具 多媒体4. 标签
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 8.4 圆(二) *创设情境 兴趣导入 【知识回顾】 我们知道,平面内直线与圆的位置关系有三种(如图8-21): (1)相离:无交点; (2)相切:仅有一个交点; (3)相交:有两个交点. 并且知道,直线与圆的位置关系,可以由圆心到直线的距离d与半径r的关系来判别(如图8-22): (1):直线与圆相离; (2):直线与圆相切; (3):直线与圆相交. 介绍 讲解 说明 质疑 引导 分析 了解 思考 思考 带领 学生 分析 启发 学生思考 0 15*动脑思考 探索新知 【新知识】 设圆的标准方程为 , 则圆心C(a,b)到直线的距离为 . 比较d与r的大小,就可以判断直线与圆的位置关系. 讲解 说明 引领 分析 思考 理解 带领 学生 分析 30*巩固知识 典型例题 【知识巩固】 例6 判断下列各直线与圆的位置关系: ⑴直线, 圆; ⑵直线,圆. 解 ⑴ 由方程知,圆C的半径,圆心为. 圆心C到直线的距离为 , 由于,故直线与圆相交. ⑵ 将方程化成圆的标准方程,得 . 因此,圆心为,半径.圆心C到直线的距离为 , 即由于,所以直线与圆相交. 【想一想】 你是否可以找到判断直线与圆的位置关系的其他方法? *例7 过点作圆的切线,试求切线方程. 分析 求切线方程的关键是求出切线的斜率.可以利用原点到切线的距离等于半径的条件来确定. 解 设所求切线的斜率为,则切线方程为 , 即 . 圆的标准方程为 , 所以圆心,半径. 图8-23 圆心到切线的距离为 , 由于圆心到切线的距离与半径相等,所以 , 解得 . 故所求切线方程(如图8-23)为 , 即 或. 说明 例题7中所使用的方法是待定系数法,在利用代数方法研究几何问题中有着广泛的应用. 【想一想】 能否利用“切线垂直于过切点的半径”的几何性质求出切线方程? 说明 强调 引领 讲解 说明 引领 讲解 说明 观察 思考 主动 求解 思考 主动 求解 通过例题进一步领会 注意 观察 学生 是否 理解 知识 点 50
本人所教的两个班级学生普遍存在着数学科基础知识较为薄弱,计算能力较差,综合能力不强,对数学学习有一定的困难。在课堂上的主体作用的体现不是太充分,但是他们能意识到自己的不足,对数学课的学习兴趣高,积极性强。 学生在学习交往上表现为个别化学习,课堂上较为依赖老师的引导。学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力较低。在教学中尽量分析细致,减少跨度较大的环节,对重要的推导过程采用板书方式逐步进行,力求让绝大多数学生接受。 1.理解椭圆标准方程的推导;掌握椭圆的标准方程;会根据条件求椭圆的标准方程,会根据椭圆的标准方程求焦点坐标. 2.通过椭圆图形的研究和标准方程的讨论,使学生掌握椭圆的几何性质,能正确地画出椭圆的图形,并了解椭圆的一些实际应用。 1.让学生经历椭圆标准方程的推导过程,进一步掌握求曲线方程的一般方法,体会数形结合等数学思想;培养学生运用类比、联想等方法提出问题. 2.培养学生运用数形结合的思想,进一步掌握利用方程研究曲线的基本方法,通过与椭圆几何性质的对比来提高学生联想、类比、归纳的能力,解决一些实际问题。 1.通过具体的情境感知研究椭圆标准方程的必要性和实际意义;体会数学的对称美、简洁美,培养学生的审美情趣,形成学习数学知识的积极态度. 2.进一步理解并掌握代数知识在解析几何运算中的作用,提高解方程组和计算能力,通过“数”研究“形”,说明“数”与“形”存在矛盾的统一体中,通过“数”的变化研究“形”的本质。帮助学生建立勇于探索创新的精神和克服困难的信心。
4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).
探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
3.某县农民月均收入服从N(500,202)的正态分布,则此县农民月均收入在500元到520元间人数的百分比约为 . 解析:因为月收入服从正态分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范围内的概率为0.683.由图像的对称性可知,此县农民月均收入在500到520元间人数的百分比约为34.15%.答案:34.15%4.某种零件的尺寸ξ(单位:cm)服从正态分布N(3,12),则不属于区间[1,5]这个尺寸范围的零件数约占总数的 . 解析:零件尺寸属于区间[μ-2σ,μ+2σ],即零件尺寸在[1,5]内取值的概率约为95.4%,故零件尺寸不属于区间[1,5]内的概率为1-95.4%=4.6%.答案:4.6%5. 设在一次数学考试中,某班学生的分数X~N(110,202),且知试卷满分150分,这个班的学生共54人,求这个班在这次数学考试中及格(即90分及90分以上)的人数和130分以上的人数.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人数约为9人.
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
二是加强领导,严格贯彻。抓班子带队伍,凝聚基层力量。统一思想认识,提升基层组织治理能力,紧盯工作难点、重点,找准制约短板,不断推动各项工作落到实处。进一步加强领导,确保每项改革有人管,明确分工任务。主要领导亲自抓,严把改革方案质量,所有分工任务都要提出可检验的成果形式和时间进度安排,着力完成改革。三是结合实际合理确定发展目标,进一步增强创新意识,摒弃腐朽观念,鼓励领导、干部大胆改革,调动积极性和主动性,争取在重点项目和关键环节上有所突破,不断激发活力。四是抓好意识形态,发挥思想政治作用。认真贯彻落实加强意识形态工作的安排部署,坚持做好思想政治和意识形态工作,多种渠道收集舆情信息,强化正面宣传引导,积极做好敏感热点问题的舆论引导。
伴随着ZT教育的深入开展,各级D组织有力推动,广大D员、干部积极投入,人民群众热情支持,整个ZT教育特点鲜明、扎实紧凑,达到了预期目的,取得了重大成果——各级D组织和广大D员、干部深入学习实践新时代中国特色社会主义思想,提高了知信行合一能力;思想政治受到洗礼和锤炼,增强了守初心、担使命的思想自觉和行动自觉;干事创业、担当作为的精气神得到提振,推动了改革发展稳定各项工作;积极解决群众最急最忧最盼的问题,强化了宗旨意识和为民情怀;深入进行清正廉洁教育,涵养了风清气正的政治生态;重点抓突出问题专项整治,消除了一些可能动摇D的根基、阻碍D的事业的因素。不忘初心、牢记使命,是加强D的建设的永恒课题,也是全体D员、干部的终身课题。这次ZT教育,总结历次D内集中教育经验,对新时代开展D内集中教育进行了新探索、积累了新经验。
四、聚焦重点难点,广专并进优化监管方式。全面吸取经验教训,聚焦重点领域和重大风险,统筹管资本要求提升监督效能,在“广”与“专”方面实现新的提升。一是狠抓三项制度改革。指导企业对公司管理组织架构和部门职能职责进行全面梳理,建立以岗位管理为核心的、适应市场要求和企业发展规划的岗位职级体系,制定“定机构、定岗位、定职数、定员额、定职责、定薪酬”的六定方案,并以此为基础开展中层干部竞争性选拔工作。市国投集团按照选人用人有关制度规定,率先开展中层干部竞争上岗。选拔中,突出实践实干实效,注重在生产经营一线、复杂工作环境和重大攻关中发现人才,让敢担当、勇作为、有实绩的干部员工有舞台。严把人员进出。企业用工一律实行计划管理,新进员工由市人社局按照“公开、公平、公正、竞争、择优”的原则统一公开招聘。鼓励企业在政策允许的情况下,采取考核淘汰一批、退岗安置一批、转岗培训一批、劳务派遣清退一批、业务外包一批等方式实现用工数量年度净减少。
1、给小狗打电话 欣赏flash动画(多媒体出现手机图案和动物电话本,拨打电话。) “你们想给谁打电话?”(给小狗打电话。) “小狗家的电话号码是多少?”(小朋友看媒体读电话号码,电话连接中,铃声响起,播放歌曲。) “咦?小狗的电话铃声和我们的电话铃声有什么不同?”(音乐铃声,会唱歌的铃声……) 2、给小兔打电话 “你们听到小兔的电话在唱什么?”(教师根据幼儿的回答用相应的歌曲重复) 师扮演小兔接电话:“你好呀,我是小兔,找我干吗呀?”(小兔我想请你去公园玩……) (鼓励幼儿大胆说出自己打电话的想法) 3、给小鸭打电话 “刚才你们打给了自己的好朋友,我也想打给我的动物朋友,猜猜我的电话打给谁?”(把谜语作为歌词演唱歌曲) “我有圆脑袋,穿着黄黄衣,走路摇摇摆,猜猜我是谁?” “唱歌呷呷呷,爱吃鱼和虾,我是小鸭子,你们猜对了!” (师生共同拨打电话。教师范唱歌曲《谁找我》) “小鸭子在忙什么?怎么还不接电话呢?”(在河里游泳。)(幼儿再唱歌曲) 4、给大象打电话 说说大象的电话铃声和小兔的铃声有什么不同?(辨别声音粗细快慢的不同)学唱大象的歌曲铃声。
一、活动综述1、活动目标2、激发幼儿探究黄豆与豆制品关系的欲望和兴趣。3、引导幼儿初步认识黄豆及其制品,并了解其营养价值。4、引导幼儿运用多种感官辨别黄豆,区分豆制品。 之所以确定这样的活动目标,首先是以《幼儿园指导纲要》中健康领域和科学领域的目标为依据,以中班幼儿年龄特征为出发点来设计,是基于豆制品对人体的营养价值而定的。在目标里,我把培养孩子情感、态度放在第一位,也就是说:在教学中,力求通过为幼儿创设一个宽松、和谐的环境。在充分调动幼儿的学习积极性和主动性以及探索求知欲望的基础上,引导幼儿学习知识和技能。二、重点、难点 根据我对教材的理解,我认为教材重点是:帮助幼儿了解黄豆及其制品具有丰富营养,有益人体健康。 教材难点:引导幼儿运用多种感官、方式辨别黄豆、区分豆制品。
2、对生活中各种各样的电话铃声产生好奇。活动准备:1、有主题“好听的铃声”经验背景。2、幼儿和家长一起制作的各种有趣的手机。3、多媒体课件:打电话flash动画。活动过程:一、演唱歌曲“打电话”——多媒体播放美丽的森林背景图片“森林真美呀!小朋友,我们一起来玩打电话的游戏好吗?” (播放音乐,歌表演打电话。用问答的形式赋予游戏情景“喂,喂,喂,请问你找谁?”“我要找xxx”“找我干吗呀?”“和我一起做游戏……”)二、在给小动物打电话情景中感受、学唱歌曲“谁找我呀”1、给小狗打电话 欣赏flash动画(多媒体出现手机图案和动物电话本,拨打电话。)“你们想给谁打电话?”(给小狗打电话。)“小狗家的电话号码是多少?”(小朋友看媒体读电话号码,电话连接中,铃声响起,播放歌曲。)“咦?小狗的电话铃声和我们的电话铃声有什么不同?”(音乐铃声,会唱歌的铃声……)2、给小兔打电话“你们听到小兔的电话在唱什么?”(教师根据幼儿的回答用相应的歌曲重复) 师扮演小兔接电话:“你好呀,我是小兔,找我干吗呀?”(小兔我想请你去公园玩……) (鼓励幼儿大胆说出自己打电话的想法)3、给小鸭打电话“刚才你们打给了自己的好朋友,我也想打给我的动物朋友,猜猜我的电话打给谁?”(把谜语作为歌词演唱歌曲)“我有圆脑袋,穿着黄黄衣,走路摇摇摆,猜猜我是谁?”“唱歌呷呷呷,爱吃鱼和虾,我是小鸭子,你们猜对了!” (师生共同拨打电话。教师范唱歌曲《谁找我》)“小鸭子在忙什么?怎么还不接电话呢?”(在河里游泳。)(幼儿再唱歌曲)4、给大象打电话 说说大象的电话铃声和小兔的铃声有什么不同?(辨别声音粗细快慢的不同)学唱大象的歌曲铃声。三、变出歌曲铃声“小动物们的电话铃声会唱歌,真好听,我们也来给自己的电话设计一个音乐铃声?”(师演唱一首幼儿学过的歌曲,作为自己的手机铃声,启发幼儿运用学过的歌曲为自己的手机设计铃声。)1、戴上自己制作的手机。2、“让我们的电话也会唱歌。”说说、唱唱幼儿自己设计的歌曲铃声。(复习熟悉的歌曲)
一、“准确、快速、灵活”的意义及其关系。 “准确”是篮球运动中的一个突出矛盾,通常在比赛中因传球准确性差造成很多失误,或因投篮不准带来比赛的失败。篮球比赛本身攻守双方一切技术、战术的应用和对抗的焦点就是围绕解决能否干扰对方的一切行动的准确性并争取自己尽量多把球投入对方篮圈,因此,不难看出“准确”的重要。 快速”的目的是为了出其不意,攻其不备,可以造成以多打少;“灵活”是随机应变,克服不利条件,争取有利局势,没有“快”就没有“灵活”,“快”与“灵”为“准确”创造条件,保证“准确”的发挥,“快”与“活”是手段,“准确”是目的,反之,“准确”的动作缩短了时间,争取了速度,“准确”的投篮又逼使对方扩大防区,而对方防区的扩大,更有利发挥“灵活”和“快速”的特长。由此可见,“准确”是三者核心,应占首位。 二、在篮球队训练中的运用 我一直担任校男篮教练工作,通过几年来的实践,我在训练比赛中注意贯彻“准确、快速、灵活”这一指导思想,取得了显著的成绩。我校男篮在参加市级比赛中,多年保持前几名的地位。
1、预期研究成果需填写具体成果形式。其成果须标注“贵州大学引进人才科研基金资助”。2、项目经费必须严格按照项目预算支付,符合财务规定的制度。3、项目研究工作时间为2-3年。4、本合同一式三份,学校科研管理部门、人事部门和项目负责人各持一份。5、可根据填写内容的需要适当增加表格页数。简 表研究项目名称 起 止 年 月 资助金额 万元项目负责人 姓 名 性别 年 龄 职务(职称) 学位 学 科 联系电话 手机 成果形式(专著1部或省级以上期刊发表论文2篇) (发表的论著应署名本项目名称及编号)项 目 研 究 组 成 员姓名 性别 年龄 职称 专业 所在部门 项目分工 签字
随着互联网自媒体的兴盛,不少人为了引起关注,吸引“粉丝”使出浑身解数。有人攀爬城市高楼,做出各种惊险动作,以赢得点击量;有“14岁荣升宝妈”的少女,靠展示自己的肚皮,获得打赏;9岁女孩在抖音发哭诉视频:“今天妈妈火化了,我再也见不到她了,求求你们,就给我一万个赞可以吗?”;有农村青年直播生吃青蛙、老鼠以求转发;有父亲虚构家庭处境,靠“卖惨”为“重病女儿”筹款……一个比一个奇异,一个比一个惊悚。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。