(三)如图, 中, ,AB=6厘米,BC=8厘米,点 从点 开始,在 边上以1厘米/秒的速度向 移动,点 从点 开始,在 边上以2厘米/秒的速度向点 移动.如果点 , 分别从点 , 同时出发,经几秒钟,使 的面积等于 ?拓展:如果把BC边的长度改为7cm,对本题的结果有何影响?(四)本课小结列方程解应用题的一般步骤:1、 审题:分析相关的量2、 设元:把相关的量符号化,设定一个量为X,并用含X的代数式表示相关的量3、 列方程:把量的关系等式化4、 解方程5、 检验并作答(五)布置作业1、请欣赏一道借用苏轼诗词《念奴娇·赤壁怀古》的头两句改编而成的方程应用题, 解读诗词(通过列方程,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?本题强调对古文化诗词的阅读理解,贯通数学的实际应用。有两种解题思路:枚举法和方程法。
方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
(1)请你用代数式表示水渠的横断面面积;(2)计算当a=3,b=1时,水渠的横断面面积.解析:(1)根据梯形面积=12(上底+下底)×高,即可用含有a、b的代数式表示水渠横断面面积;(2)把a=3、b=1带入到(1)中求出的代数式中,其结果即为水渠的横断面面积.解:(1)∵梯形面积=12(上底+下底)×高,∴水渠的横断面面积为:12(a+b)b(m2);(2)当a=3,b=1时水渠的横断面面积为12(3+1)×1=2(m2).方法总结:解答本题时需搞清下列几个问题:(1)题目中给出的是什么图形?(2)这种图形的面积公式是什么?(3)根据公式求图形的面积需要知道哪几个量?(4)这些量是否已知或能求出?搞清楚了这些问题,求解就水到渠成.三、板书设计教学过程中,应通过活动使学生感知代数式运算在判断和推理上的意义,增强学生学习数学的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.
解 由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)= 1.21a(亿元).若去年的年产值为2亿元,则明年的年产值为1.21a =1.21×2 = 2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3 当x=-3时,多项式mx3+nx-81的值是10,当x = 3时,求该代数式的值.解 当x=-3时,多项式mx3+nx-81=-27m-3n-81, 此时-27m-3n-81=10, 所以27m+3n=-91.则当x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.
一、创设情境,引入新课。课开始,首先通过谈话问学生“你们喜欢玩游戏吗?”随后呈现例题的情境图,让学生在观察中清楚的知道袋中有4个红球和2个红球。然后教师揭示摸球游戏的规则:每次任意摸一个球,摸好后放回袋中,一共摸30次。摸到红球的次数多算小明赢;摸到黄球的次数多算小玲赢。接着让学生猜一猜谁赢得可能性大一些。预设学生都会猜是小明赢得可能性大一些。然后组织学生在小组里进行摸球实验,并把摸的结果记录在书本例题的第一个记录表中,验证刚才的猜想。在学生操作完之后,让学生明确小明赢得可能性大一些。接着引导学生产生质疑:“这样的游戏公平吗?为什么?”引导学生小结:口袋中红球的个数比较多,所以每次任意摸一个球,摸到红球的可能性要大,最后小明赢得可能性也就相应地要大一些,这样摸球的游戏规则是不公平的。在此基础上揭示课题并板书:游戏规则的公平性。
三是:装修不应该打扰邻居的正常休息。如果你是事件中的受害方,你会如何处理这件事情?全班汇报交流,教师相机引导,板书:权利不是绝对的,是有界限的。设计意图:引导学生体会权利行使的界限。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以古老而优美的汉字为主题办一期手抄报。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《公民的基本权利》,下面是:宪法是公民权利的保障书;法律保障公民基本权利的落实;权利不是绝对的,是有界限的。
3.制定教学目标根据教材内容、教材的编写意图和学生的认知规律,制定本节课的教学目标为:知识与技能:给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。过程与方法:从熟悉的、有趣的生活背景中让学生感受观察范围的变化,通过观察、操作、想象等活动,发展学生的空间观念。情感、态度与价值观:体会数学与现实生活的联系,增强学习数学的兴趣以及与他人合作交流的意识。4.教材的重难点根据教材内容的地位、作用和学生已有知识经验的实际情况,制定本节课的重难点是:经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念,能解决日常生活中的一些现象。
3课题类型造型表现4教学目标1、认识三原色,让学生初步了解三原色的知识。2、观察两个原色调和之后产生的色彩变化,说出由两原色调出的第三个颜色(间色)3、能够调出预想的色彩,并用它们涂抹成一幅绘画作品。5重点难点1、引导学生观察三原色在相互流动中的色彩变化。2、引导学生进行色彩的调和、搭配。3、培养学生爱色彩、善于动手、善于观察、善于动脑的能力。
想一想:为什么在师生猜拳中老师一直说“5”能赢?为什么选择和多的那队没胜,而选择和少的那队却胜了?选择可能性大的是不是每次一定能赢?选择可能性小是不是每一次一定都输?(至此,本节课到了一个升华层次,学生通过互动游戏、自主探究、讨论分析,从而揭示了“猜拳游戏”中的秘密,对“可能性”的理解达到了一个更高水平,有效地完成了本课重难点教学。)(4)实践验证。实践验证理论。再一次组织学生有目的地猜和,进行实践验证。让理论与实践有机的结合(三)拓展创新,内化提升。儿童用品商店将要举行促销活动,凡到商店购物的顾客都可参加《转盘转转乐》活动。每位顾客可转两次,用两次指针所指数相加得到一个和,不同的和能得到相应的奖项。
【反思】本节课的教学注重体现了情境教学在教学中的运用。课堂上体现了这样几个特点:1.数学知识与生活实际相结合。数学来源于生活,生活中处处有数学。小学生对熟悉的生活情境和事物感兴趣。所以我从他们熟悉的事物中寻找教学题材,设计了有趣的情景教学。让学生感到数学知识就在他们身边,感到数学的作用,设计了作息时间表。这样,既巩固了时间的知识。又可以教育学生在生活中要合理安排时间,不要浪费时间,做时间的主人。2.注重在学习中自主探究,合作交流。在教学《时间的计算》时,让学生用自己制作的学具表亲自动手拨一拨,想一想让他们主动尝试自主发展。教学例2时让他们小组合作交流学习方法。这些都体现了培养学生的能力.自主探究的精神。
一、教材分析本课是人教版3年级上册数学第3单元的第1课时,本课内容是在学习了长度单位米和厘米的基础上进行教学的,通过学习,使学生对常用的长度单位有一个比较完整的认识,对于今后学习面积单位和体积单位,发展学生的空间观念具有重要意义。二、教学目标:根据对教材的理解,同时结合学生已有的认知结构和心理特征,制定如下教学目标:(1)、知识目标:认识长度单位毫米和分米, 初步建立1毫米和1分米的长度观念;知道1分米=10厘米,1厘米=10毫米,1米=10分米,并能进行长度单位间的简单换算。(2)、能力目标:通过估一估、量一量等活动,培养和发展学生的空间观念、估测能力、动手操作能力和推理能力。(3)、情感目标:经历实际测量的过程,体会长度单位在日常生活中的应用,感受数学和生活的密切联系,体验数学学习的乐趣。
一、说教材本课内容是人教版义务教育课程标准实验教科书三年级上册90页到91页内容。这部分内容是学生在掌握了万以内整数知识的基础上进行教学的。从整数到分数是数的概念的一次扩展,又是学生认识数的概念的一次质的飞跃。无论是意义,还是读写方法、计算方法,分数和整数都有很大的差异。因此,教材将分数的知识分段教学。本学段是分数的初步认识,这节课是认识几分之一。认识几分之一是本单元教学内容的核心。二、说学情分析在此之前,学生在生活中可能接触过二分之一这样的分数,但并不理解它的含义。分数的产生是从平均分某个不可分的单位开始的,学生生活中已经有这样的经验。例如,妈妈把一个月饼平均分成两份给弟弟和妹妹,每人分得半个月饼。但学生不会用分数来表述。所以,教学中我特别注意从学生已有的生活经验出发,在丰富的操作活动中主动去获取分数的相关知识。
一、说教材《分数的简单应用》是人教版小学数学三年级上册第八单元的知识。教材安排主要是先让学生理解一个物体或者几个物体都可以当成一个整体进行平均分,会把一个整体平均分为几部分,选择其中的几部分。根据学生的生活经验和知识背景及课本的知识特点,本节课的教学目标定为:1、知识与技能:经历解决问题的过程,能根据分数的含义,利用整数乘、除法来解决问题。2、过程与方法:通过分一分、拿一拿,理解情境中的数量关系,探求解决求一个数的几分之几的方法.3、情感态度与价值观:感悟数形结合的思想,初步了解分数的在实际生活中的应用和价值。本课教学的重点是:引导学生根据分数含义分析数量关系,并用整数乘除法来解决问题。
四、说教学重难点1.学会预测故事,能用较连贯的语言讲述故事。(重点)2.能够合理的续编故事或创编故事。(难点)五、说教法和学法【说教法】由于本单元是一个全新的单元类型,所以本课教学时需要注意教学目标的层层推进,要从唤醒学生边阅读边预测的意识开始,实践并总结预测的基本方法和途径,由课内学习延伸至课外阅读,逐步培养边阅读边预测的习惯。所以,为了帮助学生更好完成学习目标,我采用讨论法、比较法等教学方法来引导学生切实掌握预测这一策略。【说学法】说学法在学法方面,我贯彻的指导思想是把“学习的主动权还给学生”,用自主、合作、探究等方式抓住关键词句以及观察图片预测故事情节的发展,让学生成为讲故事的主人,创造故事的主人。
四、说教法、学法【说教法】1.美读感悟法: 文章语言优美,读起来琅琅上口,因此,“美读”是本课最重要,也是最主要的方法。“阅读是学生个性化的行为,不应以教师的分析代替学生的实践。”对于三年级学生来说,更不必过多的讲解分析,最主要让学生多读,同时教师要巧妙地借助课件,借助对学生读书的评价,帮助学生在读中去感受,领悟,使学生感受到语言文字中所描绘的鲜明形象,引起学生对课文中描述的事物与情景的关注,入境入情,促进学生自悟自得,受到美的熏陶,激起观察自然的兴趣。 2.多媒体情景法: 因为小学生生活经验少,但好奇心强,容易激发兴趣,因此,我运用电教手段,创设多种情景,展示课文相关图片,使学生在完全置身于课文所描绘的情景的同时,轻松、愉快、积极、主动的学习。同时,形象直观的课件展示,有助于学生读懂课文,感悟到语言文字带来的美,体验到发现的乐趣,也有助于突出教学重点,突破教学难点。 3.质疑问难法: 古人云:“学起于思,思源于疑。”课堂教学中,运用恰当的手段,引导学生质疑问难,能激发浓厚的思考兴趣和创新思维。
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
二、教学目标24时记时法与12时计时法的互换是本节课的一个教学难点,基于对教材的理解和学生的学习基础,特制定如下的教学目标;1、知识与技能:结合生活经验,明确12时计时法和认识24时记时法,使学生发现和理解24时记时法与12记时法之间的联系与区别。能够对两种记时法所表示的时刻进行换算。并能结合具体情境,推算出从一个时刻到另一个时刻所经过的时间。2、过程与方法:在活动中培养学生主动发现问题、探究问题、解决问题的能力。3、情感、态度与价值观:逐步养成遵守作息制度和珍惜时间的良好习惯,建立初步的时间观念。教具:多媒体课件、时钟三、重点难点教学重点:认识24时记时法,发现和理解24时记时法与普通记时法之间的联系与区别。教学难点:能正确地把24时记时法与12时记时法所表示的时刻进行相互转化。