【活动准备】 1、不同形态的动物或人物的剪影。 2、自制幻灯箱一个,即手电筒,卡通外形的硬纸箱,透光纸组成的"小精灵"。 3、自制幻灯片两张,美术书一本。 4、小橡皮,黑布一块。【活动过程】 导入:老师今天带来一位新朋友,它的名字叫"小精灵",我们来认识一下他好吗?(出示灯箱)谁来说一说"小精灵"都有哪些特点? 一:光影揭秘 1、在"小精灵"的肚子里有你们想吃的、想看的和想玩的,你们相信吗?不过里面还有一个非常可怕的怪物,谁能勇敢的走上来看一看?(请一名幼儿参与)请你把小手放在"小精灵"的身上说:"我会遵守诺言,不会把所看到的东西告诉小朋友们"(请这名幼儿观看)。 2、提问:你看到了什么动物?你看到了什么物体?(边提问边看)你看到了哪些人物? 3、请一名小朋友揭示"小精灵"的奥秘。
活动目标:1. 了解动物的不动种类,能说出几种动物的名称及主要特征.2. 了解海洋动物与人之间的关系,形成爱护海洋动物的意识.3. 培养倾听的习惯,激发与同伴合作、竞争的意识.活动准备:1. 参观水族馆.2. 开展以“海洋动物”为主题的生成活动.
基本部分: 1、请幼儿用手摸自己的喉咙,然后分别大声和小声说话看看有什么感觉吗?(多找一些幼儿说出他们的感受)师幼总结:大声说话,喉咙震动的就大,小声说话,喉咙震动的就小。 2、请幼儿用勺子敲敲瓷碗里面的水,分别轻轻敲,用力敲,看看用什么发现吗?幼儿回答完后师幼一起总结:轻轻敲碗,发出的声音小,碗里的水动的小;用力敲碗,发出的声音大,碗里的水动的也大。 师总结:哦,原来振动产生了声音,我们便听到了声音。 3、做律动“科学泡泡”调动幼儿情绪。 教师放电话铃声,然后接电话。(两个纸杯做的电话)教师装出很神秘的感觉,提高幼儿的兴趣。 a教师将范例电话发给幼儿让他们观察它的做法。然后把做电话的材料发给幼儿让他们和自己的好朋友一起合作制作一个电话。
活动准备:剪刀、纸片、胶水、用纸做成的城堡 活动目标:1、在折折、剪剪、贴贴中,引导幼儿理解纸片从平面到立体的变化。2、体验成功的喜悦。 活动过程:一、谈话导入师:(出示伤心手工纸娃娃)这个是谁呀?你们认识吗?其实他是一个手工纸娃娃,来,我们来看看这个手工娃娃怎么了?讨论:小纸片请你们帮它一个忙,什么忙呀?那你有什么好方法呢?教师小结:我们宝宝本领真大,想出了许多办法,那让我们一起去试一试吧.二、自由尝试1、桌上有纸、剪刀、固体胶,我们去试试吧。2、幼儿操作:要求:能用不一样的方法使纸片站起来。 师:你们都成功了吗?(出示笑脸手工纸娃娃)你是用什么办法的?请小朋友上来说说看。3、小结:原来,我们用折、剪、贴、卷的方法是能够让小纸片站起来的。
活动目标:1、巩固对正方形的认识,了解平面图形和立体的区别。2、初步感知正方体,知道其名称和最显著地特征。活动准备:圣诞老人、大、小包装盒(人手一个)、正方形卡片、剪刀、彩笔(人手一个)、各种装饰材料(皱纹纸、亮光纸、卡纸等)。活动重难点: 重点:初步感知正方体,知道其名称和最显著地特征。难点:了解平面图形和立体的区别。活动过程:一、导入部分:出示圣诞老人,引起幼儿兴趣。师:圣诞节快到了,圣诞老人给小朋友们送来了礼物,我们一起来看看是什么吧?(出示包装盒)好漂亮的礼物盒,里面会是什么呢?打开看看圣诞老人为什么要送我们这些礼物呢?它想让小朋友探索一下这些包装盒有什么秘密?
活动准备:1、不同型号的电池若干; 2、钟表、手电、电动玩具、录音机、手机等; 3、记录单;活动进行: 1、老师介绍活动任务要求: * 第一个任务是;用老师准备的电池,让钟表走起来,让手电筒亮起来;让玩具动起来。 * 第二个任务是:在安装电池的过程中,让幼儿发现、观察、思考:电池上有什么小秘密?你是怎样安装电池的?找一找看安装电池有没有小窍门,好办法。 2、介绍记录单,鼓励幼儿把安装电池的方法,用自己的方式去记录。 提示:记录表上有个X,√?幼儿也可以自己画笑脸、哭脸等。 3、介绍活动一共分四桌,幼儿可以选择喜欢的物品去操作。 4、幼儿动手操作,老师观察、指导幼儿活动情况。指导重点:(1)电池上有什么标记?电池两头一样吗?你发现了什么小秘密?(2)安装时电池鼓的一端顶在哪儿?平的一端放在哪儿?(3)小钟表、手电筒、电动玩具等在安装电池的地方有什么标记?有没有和电池一样的标记?(4)你为什么选择这个电池?你知道你装的是几号电池吗?(5)幼儿的记录情况。 5、帮助幼儿总结归纳电池的一般常识和安装电池的一些方法。(1)老师检查幼儿第一项任务完成的情况:让钟表走起来,让手电筒亮起来;让玩具动起来。
2、发展分析、比较能力,激发幼儿观察大自然变化的兴趣。准备:课前教幼儿认识一些常见的树叶。收集一些树叶。过程:一、初步形成常绿树、落叶树的概念。每组一篮树叶,小朋友观察比较。这些是什么树叶?比一比,他们有什么不同?
活动准备: 剪刀、红蓝墨水、杯子、橡皮筋、水。 芹菜、白色花朵(玫瑰或康乃馨。) 活动过程: 做小实验,请幼儿仔细观察植物是怎么喝水的。1、芹菜实验: 将芹菜的茎剪短一些,叶子摘掉一些。 把橡皮筋套在杯子上,再装进一些水,并滴进一些红墨水。 将芹菜插进杯子里,并调整橡皮筋到水面位置做记号。 过一段时间,让幼儿看看水面和橡皮筋的位置是否一样(水面低于橡皮筋),芹菜的茎有什么变化(变红)。
教学过程:一、导入1、多媒体出示嘉兴手机城群众抢购手机的画面2、多媒体出示一群人在车上、家里谈论关于手机的话题3、投影出示关于手机广告的报纸 提问:小朋友,刚才我们看到一些录象、投影都与什么有关?你对手机熟悉吗?你对手机又知道些什么?·小组讨论。·集体交流。------让幼儿畅所欲言。把对手机的一些了解由教师汇总(用表格形式)
二、活动准备:1、提供给幼儿介绍太空的资料:图书、录像、电脑。2、设计好的大幅“未来太空城”的图片。 3、各种大型积木,橡皮泥,彩纸,皱纸,各种废旧材料等。4、录音机、磁带。 三、活动过程: 1、感知太空。 (1)教师扮演星姐姐:“小朋友们好,我是宇宙太空的星姐姐,我知道你们很想知道我住的地方到底是什么样的,所以,今天我就邀请你们到太空去做客,你们高兴吗?那我们怎么去呢?(坐飞船、航天飞机等) (2)幼儿随音乐一起做律动“坐飞船”,然后自由地围坐在一起。 (3)查看关于介绍太空的资料,激发幼儿学习兴趣。 “现在,我们来到太空资料厅,请你们自己去查看关于太空的介绍,好吗?幼儿自由选择,借助各种媒体感知太空的奥秘。
2、积极参与操作,乐于表达自己的发现,培养幼儿解决问题的能力和合作意识。3、简单了解车牌号码的特点。【活动资源】1、赛车起跑线、终点线各一条;完整的车牌1张;玩具汽车、记号笔、白色铅笔每人一份。2、“123”、“234”的数字卡片、记录纸每组两份;大记录表两张、“12345”带磁力数字。【活动过程】一、赛车游戏导入,引入主题 1、赛车游戏 (1)每人一辆车,进行赛车游戏(交待比赛规则)。 (2)师:“小汽车都一样,分不清楚谁第一,怎么办?”幼儿自由讨论解决办法,引出车牌号码。2、通过观察,引导幼儿了解淄博的车牌号码。 (1)出示完整的车牌,引导幼儿观察车牌号码是由文字、字母和数字组成。 (2)认识淄博的车牌文字和字母。(鲁代表山东C代表淄博)
活动目标: 1、理解故事内容,产生有意识的变换角度去观察事物的兴趣。 2、积极参与表演游戏,从中去体验、探索和发现。 3、发挥想象力,大胆地在集体面前表述。 活动准备: 1、故事操作图片若干。 2、幼儿身着红色或蓝色的衣服。 3、高老鼠、矮老鼠图片各一张。 4、录音机,游戏音乐一段。 活动过程: 一、导入。 组织幼儿学习‘高人走’(踮起脚尖,双手举高)、‘矮人走’(蹲下来,双手放背后)。 二、欣赏故事。 1、那么,今天,我们教室里来了两只老鼠,它们也是一个高,一个矮。小朋友先听听它们的自我介绍。(出示高老鼠),你们好!我今天穿了一件红衣服,我的名字叫高老鼠。(出示矮老鼠),你们好!我今天穿的是蓝衣服,我就是矮老鼠。
【幼儿基本情况分析】 大班幼儿思维已经具有一定的广度和深度了,能认识到事物之间简单的逻辑关系,而且大部分幼儿能初步运用感官动手动脑,探索问题,但也有少数幼儿交流和分享的意识淡薄。《纲要》中明确指出科学知识是在幼儿的探究之后,在幼儿交流讨论中形成的。所以教师应通过提供交流的平台,促进有效的互动,鼓励幼儿交流发现。 【教学目标】 本次活动以幼儿为主体,教师在活动中起引导者和支持者的作用,并且考虑幼儿对种子已有的经验和潜在水平之间的距离,在本活动中我预设了以下活动目标1、使幼儿了解种子的不同传播方式,培养幼儿的观察力。2、能与同伴共同探究,用适当的方式和语言表达自己的认识。3﹑培养幼儿喜爱大自然的感情,产生继续探索大自然的兴趣 本活动的重点是在观察操作的过程中了解种子不同的传播方式,培养幼儿的观察能力。难点是引导幼儿在提问质疑和解决问题的过程中积极讨论交流,在合作中探究。
2、让幼儿知道噪音影响人的身体健康,教会幼儿养成不大声喊叫的习惯。3、丰富词:振动、噪音。活动准备:1、鼓,鼓槌,纸折的青蛙一只。2、各种操作器具:响筒、糖纸、拨弦、小铃、水杯、响板各6份。3、时钟1只,录音机、磁带。活动过程: 一、感知声音的产生(一)出示青蛙和鼓,让幼儿感知声音的振动。1、出示青蛙和鼓师:这是什么?(青蛙)谁能让青蛙在鼓面上跳舞?(敲击鼓面)2、幼儿讨论,青蛙为什么会跳动? 师:请两位小朋友上来摸一摸,鼓面有什么变化?(振动)3、知道振动能产生声音。鼓面振动还听到了什么?(声音)现在呢?振动停止,声音也就停止了。(丰富词:振动)
2.句型whereto? go to…… 活动目标:1.幼儿能初步掌握单词发音。 2.能正确理解句型含义。 3.踊跃地参加游戏,大胆大声练读。 活动准备:1.挂图[park zoo hospital postoffice] 2.卡片[park zoo hospital postoffice] 3.长绳5条。 重难点:1.post office的发音。 2.句型的理解。 活动过程:一.开始部分 1. 操练单词:出示挂图 T: what s this? C: park. T: what s this? C: zoo. [新单词] 出示挂图 T:有一个人告诉你他生病,你应该告诉他上哪去呀?
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
解析:(1)根据图象的纵坐标,可得比赛的路程.根据图象的横坐标,可得比赛的结果;(2)根据乙加速后行驶的路程除以加速后的时间,可得答案.解:(1)由纵坐标看出,这次龙舟赛的全程是1000米;由横坐标看出,乙队先到达终点;(2)由图象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的时间是3.8-2.2=1.6(分钟),乙与甲相遇时乙的速度600÷1.6=375(米/分钟).方法总结:解决双图象问题时,正确识别图象,弄清楚两图象所代表的意义,从中挖掘有用的信息,明确实际意义.三、板书设计1.用折线型图象表示变量间关系2.根据折线型图象获取信息解决问题经历一般规律的探索过程,培养学生的抽象思维能力,经历从实际问题中得到关系式这一过程,提升学生的数学应用能力,使学生在探索过程中体验成功的喜悦,树立学习的自信心.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣
解析:横轴表示时间,纵轴表示温度.温度最高应找到图象的最高点所对应的x值,即15时,A对;温度最低应找到图象的最低点所对应的x值,即3时,B对;这天最高温度与最低温度的差应让前面的两个y值相减,即38-22=16(℃),C错;从图象看出,这天0~3时,15~24时温度在下降,D对.故选C.方法总结:认真观察图象,弄清楚时间是自变量,温度是因变量,然后由图象上的点确定自变量及因变量的对应值.三、板书设计1.用曲线型图象表示变量间关系2.从曲线型图象中获取变量信息图象法能直观形象地表示因变量随自变量变化的变化趋势,可通过图象来研究变量的某些性质,这也是数形结合的优点,但是它也存在感性观察不够准确,画面局限性大的缺点.教学中让学生自己归纳总结,回顾反思,将知识点串连起来,完成对该部分内容的完整认识和意义建构.这对学生在实际情境中根据不同需要选择恰当的方法表示变量间的关系,发展与深化思维能力是大有裨益的
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.