【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
第一,要提高政治意识和政治站位 “疏整促专项行动”工作不是传统整治工作的延续,而是从建设一个什么样的*、怎样建设*,这样的政治高度和*新的定义角度开展。围绕着“四个中心”怎样建设*、怎样建设国际一流的和谐宜居之都,所以“疏整促专项行动”工作要从这个高度开展。看*要从*的高度、政治的高度看,要提高“四个意识”,特别是要提高政治站位、政治意识,要用*的标准、*的要求来衡量和看待我们的工作,不符合*功能的都需要疏解。目前不主动作为,以后被逼着作为时,所有发展机遇都已经失去了。只有疏解、腾退了空间,才可能承接更高端的东西。如果没有这个政治意识和政治站位,把空间腾退出来,即使给了我们区这种规划和定位,也没有空间来实现它。我们的发展空间只能从拆违中拿,从腾退中取。在这点上,大家在思想上一定要真正想明白这个道理,不疏解就没有出路。要认识到这是一项政治任务,也关系到未来我们要建设一个什么样的*。 第二,要做好“疏整促专项行动”这件大事 疏解的目的是为了提升,我们提升的是人居生产生活环境,提升的是城市品质,提升的是群众获得感,所以要做好规划引领。要按照“四个中心”的定位和*的标准,高水平、高层次的超前规划、超前设计。一是要符合生态特性,*是*的西南生态屏障,也是*的一个重要定位,未来*建设要突出生态特色、科技特色、文化特色,这是*未来发展的方向。二是要保障民生,这也是委员们多次提到的问题,过去小散乱污不环保、不高端,但是方便。现在整治后,环境、产业、品质都提升了,但是不方便了。在提升的同时便民服务设施要提早规划好、建设好。还要尽量为群众多留绿色空间,我们一切工作的最终目的都是让*老百姓过上更好的生活。三是要加强社会监督、舆论监督、群众监督。“疏整促专项行动”工作应该是全员参与的工作,不能政府干,群众看,要让老百姓参与进来,利用好新媒体,加大宣传,建立举报监督奖励机制,让更多的老百姓参与进来,真正发挥群众的力量,打一场拆违的人民战争,建立一种监督执法的长效机制。
2、懂得要爱护动植物,对破坏植物、残杀动物的行为表示气愤,在日常生活中能自觉做到爱护动植物,不做破坏动植物生态环境的事,积极参加保护动植物的公益活动。活动重点:感受动植物的生命现象,懂得爱护动植物。
(1)、乙方患病或者非因工负伤的,医疗期满后不能从事原工作也不能从事由甲方另行安排的工作的;(2)、乙方不能胜任工作,经甲方培训或调整工作岗位后仍不能胜任工作的;(3)、双方不能依本合同第八条第3项的规定就变更合同达成协议的;4、乙方具有下列情形之一的,甲方不得依据前款的规定解除本合同;(1)、患职业病或因工负伤并被劳动鉴定委员会确认丧失或部分丧失劳动能力的;(2)、患病或非因工负伤,在规定医疗期内的;(3)、《劳动合同法》第四十二条规定的其他情形。
本单元内容选至是八年级上册教材第三单元,在全书内容结构上起着承上启 下的作用。在了解社会生活和社会规则的基础上,本单元将进一步引导学生明确 社会责任,积极主动服务奉献社会。本单元是对第一单元、第二单元内容的深化。 本单元以“社会责任”为主题,基于学生可感知的社会生活,重点强调责任意识 和奉献精神的培养,使学生懂得因社会角色的差异而产生不同的责任,明确自身 应承担的社会责任,理解责任的承担和履行对个人、对社会的意义,培养学生的 责任意识。因此整个单元的核心任务是帮助学生认识到个人是社会的成员,社会 是由每个个体组成的。只有每个人承担责任,社会才能和谐发展;只有社会发展 了,才能为个人的成长提供良好的基础和条件。帮助学生理解承担责任的结果可 能会获得回报,也可能要付出一定的代价,懂得对自己的行为负责,使学生理性 对待承担责任过程中的得与失。引导学生感悟生活中无时无处不在的关爱,理解 关爱他人是一种幸福,同时也要讲究一定的艺术。引导学生思考服务和奉献的意 义,培养学生的服务意识和奉献精神。
甲方(用人单位)名称:xxx传媒有限公司法定代表人或主要负责人:XXX办 公 地 址 乙方(劳动者)姓名 性别 民族 出 生 年 月 文化程度 籍贯 身份证(或其它有效证件)号码 家 庭 住 址 根据《中华人民共和国劳动法》、《中华人民共和国劳动合同法》和有关法律、法规,甲乙双方经平等自愿、协商一致签订本合同,共同遵守本合同所列条款。第一条 劳动合同期限1. 劳动合同期从 年 月 日起至 年 月 日止。其中试用期从 年 月 日起至 年 月 日止。第二条 工作内容及要求乙方安排在 部门从事 工作,乙方必须根据甲方规定的岗位工作职责和要求,按时、按质、按量完成本职工作。第三条 工作时间和休息休假1. 工作时间按下列第 项确定:(1)实行按工时制。乙方每日工作8小时,每月休息 天。(2)根据工作岗位特点实行相关底薪待遇提成制定。2.甲方由于工作岗位需要,上、下班及休息时间应按本单位的规定执行。第四条 劳动报酬及支付方式与时间1.乙方的月工资以基本工资 元+奖金提成组成。2.甲方的工资发放日为每月15日,甲方不得无故拖欠。
四、债权与债务的处理: 双方确认在婚姻关系存续期间没有发生任何共同债务,任何一方如对外负有债务的,由负债方自行承担。(__方于____年__月__日向×××所借债务由__方自行承担……)
三、债务的处理:双方确认在婚姻关系存续期间没有发生任何共同债务,任何一方如对外负有债务的,由负债方自行承担。(/方于年月日向XXX所借债务由方自行承担……)
2、债务处理 (1)夫妻关系存续期间,男方为夫妻共同生活而进行的项目投资所产生的对外债务为 万元(大写: 万元整)。此部分债务双方确认为共同债务,女方对此部分债务予以确认,并不提出异议,承诺由双方共同偿还。 (2)双方共同确认,女方对外无共同债务,男方对外亦无其他债务。夫妻共同债务范围以本次协议确认的为准,如有未纳入本协议的债务,则不属于夫妻共同债务,男女双方承诺各自偿还。债权人主张权利的,由债务承载方各自负责偿还。
我俩于20**年**月**日在**市**区民政局婚姻登记处登记结婚。结婚证字号:***************号。我俩因感情破裂,现自愿离婚。经双方充分考虑、协商,对离婚事项达成如下协议
一切从实际出发,不刻舟求剑、不纸上谈兵,深入企业、深入市场,摸清真实情况、找准真正问题。坚持系统观念,统筹兼顾、系统谋划、整体推进纺织现代化产业体系建设,正确处理好顶层设计与实践探索、战略与策略、守正与创新、效率与公平、活力与秩序、自立自强与对外开放等一系列重大关系,找到产业发展的平衡点、着力点。在行业工作中,我们要在完善政策环境和规划引导方面下功夫,努力推动实现五个平衡。平衡好制造与服务。强化制造的基础地位,不能当成“低端产业”简单退出。特别是印染加工、纤维制造等科技含量高,产业影响大的领域要作为高端产业予以支持。推动三次产业融合发展,推动高端制造与现代服务一体发展。平衡好发展与安全。要全力应对大国博弈、地缘政治的深刻影响,保障原材料供应,积极推动知识、科技等要素的全球转移与循环。深化开放,优化产业链国际布局,提升产业链的安全性与竞争力。
提起《天线宝宝》,对于我们大人来说或许还有几分陌生,然而对于孩子来讲,却是再熟悉不过了。特别是小班的小朋友更是兴趣浓厚,孩子通过看电视、玩玩具,已经与“天线宝宝”结成了好朋友,“天线宝宝”以其可爱的形象、憨态可掬的动作,深受孩子的喜欢,容易激发孩子们的情趣情感,引起他们的共鸣。新《纲要》精神指出:教学应关注来自孩子生活的、感兴趣的话题,因此,我从孩子的兴趣出发,结合小班幼儿发展的实际水平,选择《天线宝宝》作为我活动的题材。首先我认为情绪在指导幼儿行为方面起着重要的作用,愉快的情绪往往能激起幼儿的共鸣,使幼儿在活动中愿学、乐学、好学、小班幼儿年龄在3岁半左右,处于涂鸦期、表现期,他们好奇、好动、好模仿;喜欢明亮的色彩如、红黄蓝绿和有变化环境;因此,我制定的第一的目标是(一)引导幼儿在进一步感知红、黄、绿、紫四种色彩的基础上,能乐意地表现自己。在技能上:鼓励幼儿用棉签大胆涂色,充分体验美术活动的乐趣。在情感上:帮助幼儿感受集体活动的快乐,培养活泼开朗的性格。
2、目标定位:活动的目标是教育活动的起点和归宿,对活动起着导向作用。根据中班幼儿年龄特点及实际情况,目标定为: (1)幼儿在感知萝卜的基础上,能表达萝卜的特征及用途,并能按萝卜的特征进行分类。 (2)在游戏中了解萝卜的生长过程,体验萝卜生长的快乐。 (3)幼儿乐于探索,能大胆表述,在活动中感受萝卜的有趣,产生爱萝卜的情感。活动重点是:感知萝卜的有趣,主要是萝卜的特征、用途及生长过程。通过探索发现、多媒体课件、歌曲引路、游戏体验及品尝萝卜制品,使活动得到深化。 活动的难点是:根据萝卜的不同特征进行分类,主要通过小组商量自主操作,在动手的过程中掌握分类标准及分类结果,提高幼儿的分类能力。通过集体评价,使幼儿的分类经验得到整理。总之,我们寓教育于生活情境、游戏之中。为此,作了以下活动准备: 1、小兔子玩具、各种萝卜、篮子每桌一套、多媒体课件、萝卜食品、轻音乐。 2、幼儿对蔬菜有一定的经验(吃过或看过)二、说教法。 新《纲要》指出:“教师应成为学习活动的支持者、合作者、引导者。”活动中应力求“形成合作探究式”的师幼互动。因此,本次活动我除了以自己的情绪、形态感染幼儿外,还挖掘其综合活动价值,采用了适宜的方法组织教学,采用的教法有: 1、操作法:本次活动安排了两次操作活动。第一次是引起兴趣后第一次操作,主要是探索萝卜的趣味性、多样性,让幼儿在看一看、摸一摸、比一比中获得感知。第二次操作是对萝卜进行分类。幼儿分类是指幼儿把具有一个或几个共同特征的物体聚集在一起的活动,分类活动是观察活动的延伸和应用。 2、游戏法:本次活动的第三环节中,我就引导幼儿扮演萝卜籽,共同体验萝卜生长的快乐。由于我利用了节奏快的旋律巧填歌词,编成了一首《萝卜歌》,这给游戏活动注入了新的活力。孩子在表演的过程中不仅理解了萝卜的生长过程,更创造了一个个可爱的萝卜形象。 3、演示法:本次活动中的演示法是通过制作多媒体动画“萝卜的生长过程”,让幼儿对萝卜生长有全新的认识,在这一过程中,现代教学辅助手段的运用发挥了传统教育手段不可替代的功能,使理解和认识更透彻。 4、情境教学法:在教学过程中教师有目的地引入或创设具有一定情绪色彩的形象,为主体的生动活动提供具体的场景,以引起孩子一定的态度体验,使孩子心理机能得到发展的方法。 本次活动的全过程,我就引入了幼儿喜欢的兔子形象,结合秋收,引发幼儿融入到看萝卜、分萝卜、品尝萝卜的情境中,使幼儿主动探究,积极思维,达到科学素质的提高与个性发展的统一。
按公司《考勤管理制度》规定,201x年x月至201x年x月,公司员工应出勤打卡天数为xxx天。经统计核实,在此期间xxx同志实际只完成出勤打卡xx天,具体数据如下:201x年x月份打卡x天、事假x天;201x年x月份打卡x天;201x年x月份打卡x天;201x年x月份打卡x天;201x年x月份打卡x天、在xx组织推介会x天,共计xx天;201x年x月份打卡x天。
教学过程: 孙悟空的“火眼金睛”。 ――为什么孙悟空能很快认出妖魔鬼怪?因为他看东西的时候,盯着看,仔细地看。我们来学孙悟空那样“火眼金睛”看东西好吗? ――引导幼儿定眼看物,模仿孙悟空的“火眼金睛”。 我是小悟空。 ――幼儿扮演小猴子,教师扮演孙悟空。孩子们,我得到一个消息,猴山上来了许多怪兽,我们该怎么办? ――教师带领幼儿边念“张大眼睛看,看得清,投得准”,边做投掷动作。 ――幼儿两人一组,互相分散自由地进行抛接、投掷练习。
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。