一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
在答案的汇总过程中,要肯定学生的探索,爱护学生的学习兴趣和探索欲.让学生作课堂的主人,陈述自己的结果.对学生的不完整或不准确回答,教师适当延迟评价;要鼓励学生创造性思维,教师要及时抓住学生智慧的火花的闪现,这一瞬间的心理激励,是培养学生创造力、充分挖掘潜能的有效途径.预先设想学生思路,可能从以下方面分类归纳,探索规律:① 从加数的不同符号情况(可遇见情况:正数+正数;负数+负数;正数+负数;数+0)② 从加数的不同数值情况(加数为整数;加数为小数)③ 从有理数加法法则的分类(同号两数相加;异号两数相加;同0相加)④ 从向量的迭加性方面(加数的绝对值相加;加数的绝对值相减)⑤ 从和的符号确定方面(同号两数相加符号的确定;异号两数相加符号的确定)教学中要避免课堂热热闹闹,却陷入数学教学的浅薄与贫乏.
[互动2]师:请大家从上面的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式?小组讨论之后再发表意见。生:第一步根据图象,确定这个函数是正比例函数或是一次函数;第二步设函数表达式;第三步:根据表达式列等式,若是正比例函数,只要找图象上一个点的坐标就可以了;若是一次函数,则需要找到图象上两个点的坐标,然后把点的坐标分别代入所设的解析式中,组成关于R、b的一个或两个方程。第四步:求出R、b的值第五步:把R、b的值代回到表达式中就可以了。师:分析得太好了。那么,大家说一说,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?要说明理由。生:确定正比例函数需要一个条件,而确定一次函数需要两个条件。原因是正比例函数的表达式:y=Rx(R≠0)中,只有一个系数R,而一次函数的表达式y=Rx+b(R≠0)中,有两个系数(待定)R和b。
(三)如图, 中, ,AB=6厘米,BC=8厘米,点 从点 开始,在 边上以1厘米/秒的速度向 移动,点 从点 开始,在 边上以2厘米/秒的速度向点 移动.如果点 , 分别从点 , 同时出发,经几秒钟,使 的面积等于 ?拓展:如果把BC边的长度改为7cm,对本题的结果有何影响?(四)本课小结列方程解应用题的一般步骤:1、 审题:分析相关的量2、 设元:把相关的量符号化,设定一个量为X,并用含X的代数式表示相关的量3、 列方程:把量的关系等式化4、 解方程5、 检验并作答(五)布置作业1、请欣赏一道借用苏轼诗词《念奴娇·赤壁怀古》的头两句改编而成的方程应用题, 解读诗词(通过列方程,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?本题强调对古文化诗词的阅读理解,贯通数学的实际应用。有两种解题思路:枚举法和方程法。
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.
解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大.
(一)突出第四季度特点,切实加强重点领域环节管控。 各县市、市直各有关单位要针对第四季度安全生产的特点,切实加强交通运输、旅游和人员密集场所安全监管,严防发生群死群伤事故。 一是加大对危货运输等重点企业、重点车辆、重点路段的监督检查和执法力度。要深刻汲取X事故教训,加强托运、承运、装卸、车辆运行等危险货物运输全链条安全监管,各级交通、公安、应急、市场监管、消防等部门要组成联合检查组,迅速对辖区所有危化品运输企业开展一次专项安全检查,全面清除安全隐患;要加强机场、海关监管场所等危险货物装卸、储存场所和设施的安全监管,对不符合安全生产条件的进行清理整顿,坚决消除监管盲区和死角;严格检查各类交通运输工具技术性能和运营状态,加快推进危险路段隐患排查治理,严厉查处各类交通违法违规行为;重视境内高速公路的保通工作,公路、路政、公安交警部门要强化部门间配合,确保高速公路安全畅通。 二是要进一步加强旅游场所风险区域、游客运载工具、游乐设施及带有危险性项目的排查监测和维护管理,按疫情防控常态化工作要求控制好景区、游乐场所高峰时段人流量。三是要深入开展消防安全专项整治,突出商场市场、餐饮娱乐、宾馆饭店、文物建筑、学校车站、医院、社会福利机构等人员密集场所,以及高层建筑、城乡结合部、易燃易爆品生产仓储、劳动密集型企业、“三合一”“多合一”场所等重点防控对象,加强消防安全管理和隐患排查,及时发现和消除火灾隐患。四是要加强大型公共活动、客运站点等高密度人群的安全管理,严密制定并落实安全防范措施,合理控制、及时疏导密集人流,严防拥挤踩踏事故发生。
同志们:把今天的“招商引资突破年”和“重大项目推进年”会议名称确定为誓师大会,意味着战前动员,昭示着县委、县政府举全县之力抓招商、抓项目的决心不改变、信心不动摇、力度不减弱,主要目的在于部署任务、传导压力、压实责任,以“开局就是决战、起步就是冲刺”的紧迫感,点燃干事的激情、激发工作的斗志,动员全县上下撸起袖子加油干、全力以赴向前冲,吹响招商引资工作冲锋号,奏响重大项目建设进行曲,奋力谱写*转型跨越壮美乐章。这个会议,既是落实县委十三届三次全会明确的深入开展“四个年”活动中两个“首战年”任务,也是贯彻年初的市委经济工作会议精神。为了开好这个会议,我们从*年第四季度工作汇报会后就开始筹备,重点在于制定这“两个年”的活动方案,今天一起随会议汇编印发给大家,共涉及10余个政策措施文件。“两个年”的活动方案,县级分管领导和责任部门做了大量的调查研究工作,也借鉴了外地一些成功做法和经验,春节前我和县长就专题听过一次汇报,春节后又分别经过县政府常务会和县委常委会研究。应该说,出台的政策科学规范,制定的措施务实创新,划定的责任清晰明了,是指导全县上下抓好“两个年”活动的行动指南。刚才,*副县长和*副县长分别就“招商引资突破年”和“重大项目推进年”活动作了安排部署;县长与4家责任单位代表签订了年度工作目标责任书,*分别作了誓师发言,誓言铿锵有力、掷地有声,希望忠实践诺、真抓实干,确保年底一一兑现。与会的各位同志要认真研究“两个年”活动的相关要求,深刻领会今天会议的精神,切实抓好贯彻落实。下面,我再强调三点意见。一、把握大势、凝聚共识,坚定开展“招商引资突破年”
1、录用合同,它是指用人单位在国家劳动部门下达的劳动指标内,通过公开招收、择优录用的方式订立的劳动合同。录用合同一般适用于招收普通劳动者。目前,全民所有制企业、国家机关、事业单位、社会团体等用人单位招收录用劳动合同的特点是:用人单位按照预先规定的条件,面向社会,公开招收劳动者;应招者根据用人单位公布的条件,自愿报名;用人单位全面考核、择优录用劳动者;双方签订劳动合同。
四、公司承诺1、来自外地招聘的驾驶员,在本岗位工作满三个月,路费凭票证可以实报实销;2、公司提供驾驶员住宿条件(包括水、电、暖、床、空调、卫生间设施);3、试用期驾驶员一经正式录用,驾驶员行驶在货运途中,伙食补贴为每天50元;4、电话费为每辆车每月100元。
(一)乙方实行以下第种工时制。1、实行固定工作制的,平均每日工作时间不得超过8小时,平均每周工作时间不得超过60小时。2、实行不定时工作制的,工作时间和休息休假甲乙双方协商安排。(二)甲方因工作需要安排延长乙方工作时间的,应依法安排乙方同等时间补休或支付加班加点工资。(注:加班加点工资标准应按国家相关规定明示于合同中。)(三)乙方依法享受国家规定的节假日和本单位规定休假制度。注:工作时间和休息休假是《劳动合同法》新增的必备条款。第四条劳动保护和劳动条件(一)甲方根据生产岗位的需要,按照国家有关劳动安全、卫生的规定为乙方配备必要安全防护措施,发放必要的劳动保护用品。(二)甲方根据国家有关法律、法规,建立安全生产制度;乙方应当严格遵守甲方的劳动安全制度,严禁违章作业,防止劳动过程中的事故,减少职业危害。
二、办理协议离婚必须符合的条件1、当事人双方须有自愿离婚的合意,且意思表示真实;2.当事人须对子女和财产作适当处理;3、办理过结婚登记;4.双方当事人具有完全民事行为能力。三、双方自愿离婚的程序 根据《婚姻法》和《婚姻登记管理条例》的规定,男女双方自愿离婚,必须到婚姻登记机关办理离婚登记(婚姻登记机关,在农村是乡、民族乡、镇人民政府,在城市是街道办事处和市辖区的民政部门或者不设区的市人民政府的民政部门).其程序如下:
社会保障不断完善。城乡居民社会养老保险、城乡居民基本医疗保险实现全覆盖。城乡居民基本养老保险续缴1667人,续缴率99%;职工养老保险扩面净增1700人,完成任务的101%;城乡居民合作医疗参保34044人,参合率达99.54%。合作医疗基金补偿38.1万人次,补偿金额达3517万元。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。