2.三角形的分类。师:你能给三角形按照不同的标准进行分类吗?生用自己喜欢的方式整理分类,然后汇报:生:三角形按角分为锐角三角形、直角三角形、钝角三角形。师:什么是锐角三角形、直角三角形、钝角三角形?生:三个角都是锐角的三角形叫做锐角三角形;有一个角是直角的三角形叫做直角三角形;有一个角是钝角的三角形叫做钝角三角形。生:三角形按边分为不等边三角形(三条边都不相等)、等腰三角形(等边三角形) 等腰三角形的两条边相等,等边三角形的三条边都相等。3.四边形分类。师:你能给四边形分类吗?生:四边形分为平行四边形和梯形;平行四边形包括长方形和正方形,长方形又包括正方形;梯形包括等腰梯形和直角梯形。4.直线、射线和线段的关系。小组内互相交流,然后汇报:
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
1.师要注意区别教学内容是否适合进行小组合作探究。这种学习是否每节课都需要。学生的小组学习是否在走过场,或者说流于形式。教师要注意营造自由自在的学习氛围,控制讨论的局面,如讨论中是否有人进行人身攻击,是否有人垄断发言权而有的人却一言不发,是否有人窃窃私语,教师要在巡视及参与中“察言观色”,及时调控。2.教师要充分注意精心设计的问题。教师的教学设计是否合适,是做秀还是教学的需要。这不仅需要教师的认同,还需要课程的认同,学生的认同。因此,对于适合采用小组合作探究方式的教学内容,我们一定要根据课程标准的三维目标学生现有的认知程度和兴趣以及本课要解决的问题和教学任务来精心设计问题。3.要注重小组合作探究的组织,进行适当有效的指导。教师要转换自己的角色,从传授者变成指导者、参与者、监控者和帮助者,并切实注意自身行为的方法和效果,及时进行调整。
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
一、课堂教学:1、引导阶段:师:同学们上节课我们学习了的第八课《瓢虫的花衣裳》同学们表现得很好,连隔壁班的老师都夸奖你们呢!同学们要继续努力。我们知道世界每天都在发生着不同的变化,每天都会发生很多有趣的事情。这几天你发生了哪些有趣的事情?生:各抒己见,气氛活跃。师:同学们都很积极,那我先说一下老师有趣的事情,再请同学们说说自己的事情好不好呀?
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的余弦公式与正弦公式. *创设情境 兴趣导入 问题 我们知道,显然 由此可知 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 在单位圆(如上图)中,设向量、与x轴正半轴的夹角分别为和,则点A的坐标为(),点B的坐标为(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用诱导公式可以证明,(1)、(2)两式对任意角都成立(证明略).由此得到两角和与差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函数与,的三角函数值之间的关系;公式(1.2)反映了的余弦函数与,的三角函数值之间的关系. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 25
活动三:用自己的创意和行动为家庭作贡献学生阅读教材第44页,看看图中的创意员为家庭出了哪些“好点子”,再想想自己家是不是也缺少些什么。然后,小组合作出主意,为了让每一个同学家更好,针对缺少的东西,想一些“好点子”。再全班展示交流,教师进行总结评价。板书:自己的创意和行动。设计意图:引导学生在讨论交流的过程中,给家里出一些“好点子”,做一些力所能及的事。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸生活中,多为家里做力所能及的事,为家庭做贡献。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。
1.知识与技能:体验探究活动,了解瓶子的对称造型特点,掌握对折纸的基本方法。运用折、剪、撕、贴等多种方法美化装饰创作作品。 2.能力目标: 培养学生对折纸瓶子和装饰美化的能力,提高学生创新表现、动手实践、观察生活和审美感知的能力。3.情意目标:激发学生对美术学习活动的兴趣、对传统文化的认同和热爱之情,体验创造成功的快乐,能够运用自制的瓶子作品美化生活环境。明确了教学目标,本课的重难点也就显而易见了:教学重点是:感受瓶子背后蕴含的文化,了解折剪的基本方法及简单的纹饰设计。教学难点是:剪对称形的瓶子时,如何使瓶子的大小合适、外形美观,给人美的享受。
(1) 美育目标:通过引导学生初步认识人与自然的关系,激发学生热爱自然,保护绿色生命的情感。(2) 知识目标:鼓励学生大胆地、有个性的用自编故事、绘画方式等去表达对大树的情感。(3) 能力目标:通过本课的学习,培养学生的想象能力、儿童画创作能力、语言表达能力等。
1.知识与技能:体验探究活动,了解瓶子的对称造型特点,掌握对折纸的基本方法。运用折、剪、撕、贴等多种方法美化装饰创作作品。 2.能力目标: 培养学生对折纸瓶子和装饰美化的能力,提高学生创新表现、动手实践、观察生活和审美感知的能力。3.情意目标:激发学生对美术学习活动的兴趣、对传统文化的认同和热爱之情,体验创造成功的快乐,能够运用自制的瓶子作品美化生活环境。明确了教学目标,本课的重难点也就显而易见了:教学重点是:感受瓶子背后蕴含的文化,了解折剪的基本方法及简单的纹饰设计。教学难点是:剪对称形的瓶子时,如何使瓶子的大小合适、外形美观,给人美的享受。
一、说教材《文具的家》这篇课文是一年级下册第七单元的第一篇课文,课文以通过一个小朋友找不到铅笔、橡皮时妈妈与他的对话以及后来他的改变,渗透着对于孩子们要爱护文具的主题思想的`教育。课后设了两道题,第一道是要求学生朗读课文,课件能让学生通顺流利的朗读课文必然是本课教学的一个重要目标;第二题是读一读,记一记,出示了“新”“些”等四个字组成的不同的词语,意在培养学生通过同一个字组成不同词语的词语积累的观念和方法。二、说教学目标1.正确认读13个生字,认真学会7个生字,并端正、整洁地书写,培养学生良好的书写习惯。2.正确、流利、有感情地朗读课文,并能有意识的通过一字多词的方式积累词语。3.了解课文内容,逐步培养孩子养成爱护学习用具的好习惯。
一、说教材《一幅名扬中外的画》是统编小学语文三年级下册第三单元中的略读课文,主要是介绍北宋绘画作品《清明上河图》,作者先对《清明上河图》进行了简单的介绍;后面的几个段落介绍了各行各业、热闹的街市以及桥北头的具体场景的画面内容;最后以《清明上河图》的历史价值结尾。学习这篇课文的目的是让学生在欣赏这幅绘画作品的同时,了解《清明上河图》的历史价值,找出它名扬中外的原因,体味中华传统文化的博大和作为炎黄子孙的骄傲。二、说学情三年级的学生能够在父母的帮助下,搜集有关的资料。心理学研究表明:小学生的思维在很大程度上还主要是依靠直观的、具体的内容。由于本课的历史背景和学生的生活情景相距很远,我提前布置让学生搜集有关《清明上河图》的资料。三、说教学目标1.正确、流利地朗读课文,理解课文内容。2.对照画面,了解课文描写了画面上的那些内容,了解《清明上河图》的历史价值。四、说教学重难点1.通过阅读课文和观察画面,初步了解《清明上河图》的内容和艺术价值。(重点)2.培养学生热爱祖国传统文化的感情。(难点)
四、说教学重难点1.正确、流利、有感情地朗读课文,理解课文内容,说说课 文都写了宇宙另一边的哪些秘密。(重点)2.感受作者奇妙的想象,并能试着发挥想象用自己的话说说宇宙的另一边还会有什么秘密。(难点)五、说教法学法1.朗读感悟法。文章语言新奇有趣,读起来朗朗上口,因此“美读”是本课最重要、也是最主要的办法。“阅读”是学生个性化的行为,不应以教师的分析代替学生的实践。教师要巧妙地借助课件,借助对学生读书的评价,帮助学生在读中去感受、领悟,使学生感受到语言文字所描绘的鲜明形象,引起学生对课文中描述的事物与情景的关注,入境入情,促进学生激发想象。 2.质疑问难法。古人云:学起于思,思源于疑。课堂教学中,运用恰当的手段,引导学生质疑问难,能激发浓厚的思考兴趣和创新思维。 3.发挥想象法。启迪学生联系生活,充分发挥想象,看看宇宙的另一边还有哪些新奇的事情会发生,开拓学生思路。
首先听A段主题旋律,我启发学生用声势动作、律动等方式参与到音乐中来,让学生展开丰富的想象力,激发学习兴趣进一步感受音乐里调皮的小闹钟形象。然后在通过演唱A段主题旋律,加深对乐曲的主题记忆,为下一环节做铺垫。在B段主题旋律教学中,我引导学生参与音乐体验,引发想象与联想,采用了律动、打击乐器伴奏、声势活动等形式,通过让学生在闹铃声处使用打击乐器伴奏,模仿闹钟铃响参与音乐体验,不断加强学生对音乐主题的理解与记忆更加深了学生对音乐形象的感受,同时也培养了学生的创造力、表现力和良好的合作意识。第四个环节是参与实践,体验音乐有了前面三个环节的“聆听”,接下来就是有拓展地“聆听”。在这一环节不仅体现了学生的表演欲望,同时也锻炼了学生的表演能力。配合多媒体欣赏学生在听音乐主题A、B部分能准确运用律动、歌唱、声势动作、打击乐器伴奏等形式,同时也培养了学生静听音乐的良好习惯,将课堂气氛推向高潮,学生的学习兴趣、自信心、合作能力等都得了很大的提高。
师:现在请同学们跟着老师一起朗读歌词。师:我要请两位同学上来,一位同学扮演小朋友,另一位小朋友扮演小象,为我们朗读一次歌词,谁愿意来?学生扮演角色朗读歌词师:你们觉得他们演得好吗?能得多少分?请学生评价,教师总结。(三)编创动作表现歌曲师:如果能加上动作就更好了,现在我们一起来开动脑筋,为这首歌编创动作。在教师的引导下,一句句为歌曲编创动作(四)听唱法学唱歌曲师:我们学会了歌词,还编了动作,当更要学会唱,请同学们跟着老师的琴声学唱歌曲。学生学唱,然后由学生跟着音乐表演歌曲(五)对唱法表演歌曲师:现在我们请1、2组同学扮演小象,3、4组的同学来问小象,我们分角色来表演歌曲。 学生先在原位上演练一遍,然后全体起立,相对而立,表演歌曲。教师作出评价和肯定。三、总结师:今天我们学到了什么学生回答师:今天,我们学习了小象的知识,知道了要与小象成为好朋友,要保护小象和其它动物,学会了表演歌曲《可爱的小象》。
3、小结:本节课我们听唱了三首不同风格的关于星空的音乐作品,同学们还可以收集更多此类歌曲听一听,感受夜晚星空之美。十、 说板书设计:首先,板书课题时用小星星的图案代替文字,更加吸引学生,容易激发学生的学习兴趣。其次,本节课的板书主要体现乐理知识:反复记号;柯达伊手势图谱。板书目的帮助学生解决学习中的难点。十一、说教学反思:亮点:教师根据学生的身心特点及学习情况有目的、有计划的引导学生进行学习,以达到教学目标。根据学生已有知识,运用柯达伊手势教学法,在准确演唱歌曲的基础上,学唱歌谱,帮助学生建立音高概念,完整的演唱歌曲。成功解决本课教学的难点,完成教学目标。不足之处:教师对于学生律动表演的规则讲解不到位,学生操作不熟练。专业术语使用不到位、不规范,有待于进一步改进和提高。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。