第三,进一步抓好问题整改落实,将主题教育问题整改与推进改革发展有机结合起来,严格对标对表,坚持统筹兼顾、标本兼治,确保整改落实全面到位,同时扎实做好第二批主题教育的谋划准备工作,确保整个主题教育上下联动、有机衔接。深刻认识检视整改是确保主题教育取得实效的关键一环,切实增强做好检视整改工作的政治自觉,坚持边学习、边对照、边检视、边整改,在抓好问题整改上下真功夫、下狠功夫,做到问题不解决不松手、整改不到位不罢休。对检视梳理的问题必须主动认领、自觉对号入座、深刻剖析根源,搞清楚是思想问题还是能力问题,是方法问题还是作风问题,是长期存在的顽瘴痼疾,还是最近才出现的急难杂症,做到真认账、真反思、真整改。从政治上认识、推进和检验整改工作,把人民群众满意不满意作为根本检验标准,增强“等不起、慢不得、坐不住”的紧迫感,把按时完成检视整改作为军令来执行,持续盯住问题不放、严格落实整改措施,确保事事有着落、件件有结果。把制度建设贯穿检视整改全过程,强化制度刚性约束,把整治成效转变为治堵效果,做到既谋当下、又管长远。
分管领导要紧紧围绕“三保”(保安全、保质量、保进度)目标任务,靠前指挥、倒排工期、挂图作战,从项目建设的具体问题入手,以钉钉子的精神抓重点、抓关键、抓核心,加大施工现场巡查频次,及时协调处理和跟进服务,确保按期完成×××××××、×××××××等民生项目。紧盯×××××××,加快工程进度,完工的尽快组织验收结算。主动对接、加强服务,确保×××××××按期完成年度建设任务,尽快交付使用。二是科学谋划城乡建设重点工程,准确把握国家、省、市关于项目建设的具体要求,吃透政策、把握导向、聚焦需求,围绕×××××××基础设施布局方向,提前启动明年×××××××、×××××××等重点项目的摸底调查和前期手续办理工作,确保×××××××项目落地实施。四、聚焦主业、守牢底线,全面完成各项既定目标。
2、学习自制传话筒,提高动手能力。 【活动准备】 各种声音的录音;铃鼓、锣、三角铁、尺子、皮筋、塑料袋、筷子、吉他等;纸杯、棉线、透明胶带。 【活动过程】 1、播放各种声音的录音,引起幼儿的兴趣。 提问:“你听到了什么?” 2、引导幼儿尝试用各种方法使物体发出声音。 (1)提供各种物体,引导幼儿观察。 提问:“这些东西不动时,它能发出声音吗?”“你能用什么办法使它们发出声音呢?”
2.感受晴朗夜空的美丽,生发热爱大自然的情感,激起幼儿探索宇宙奥秘的兴趣,培养好奇心。活动准备:图片两张(船、月亮)活动过程:1.今天,范老师请来了一位新朋友到我们班来做客,大家欢迎吗?(欢迎)它是谁呀?(出示图片:船)2.让幼儿学习一首儿歌:〈小小的船〉“月儿弯弯,像只小船,摇呀摇呀,越摇越圆。月儿弯弯,像个银盘,转呀转呀,越转越弯。”(1) 教师先念一遍儿歌(2) 接着让幼儿轻轻跟念(3) 让幼儿自己念儿歌
小熊说:“风把我的帽子吹跑了,你愿意帮我去找帽子吗?” 小青蛙说:“行啊,母鸡在孵小鸡,我正想给她送蘑菇去当点心,我们边走边找吧。”走啊走啊,他们遇见了小松鼠。 小熊说:“风把我的帽子吹走了,你愿意陪我去找帽子吗? 小松鼠说:“好啊,母鸡在孵小鸡,我正想给她送伞去呢,我们边走边找吧!”他们走啊走,突然小熊发现了粉红色的帽子。帽子在地上,两只小鸡住在帽子里。 鸡妈妈说:“多亏了这顶帽子,要不然,我的宝宝们会着凉的。 小熊采了一片叶子戴在头上。呵呵,小熊又有新帽子了。 活动目标: 1、 通过观察、理解小熊寻找帽子的有关情节,知道帮助别人是一件快乐的事情。 2、 能正确的翻阅图书,并愿意大胆的讲讲、演演故事中有趣的情节。评价: 第一条目标定位单独看比较的合理,既有故事情节的认知也有情感态度,比较的整合。但是从教师还想融合翻阅的学习和讲述表演的能力,那还需要上下调整。 第二条目标中“能正确的翻阅图书”在过程中涉及的不多,因为以大图书阅读为主,而且“正确”是指什么,不太明确。 调整:1、学习有序翻阅图书,了解小熊寻找帽子的有关情节。2、愿意在集体面前大胆的扮演角色,表演情节感知帮助别人是一件快乐的事情。 活动准备:大图书一本、幼儿人手一本小图书、角色头饰、录音故事比较的充足,也都是能为目标达成服务的。 录音:在孩子还没有能比较熟练的有序翻阅期老师可以调整为教师当场讲述故事,根据孩子的行为来调整翻阅的间隔速度。如果孩子能比较熟练的有序翻阅了,那么可以用录音来统一翻阅速度,这是个别的能力弱的孩子老师可以正对性的帮助了。 活动现场记录:
2、学会阅读用绘画的形式表达小猫和小狗的信,了解写信的格式,理解信的内容。 3、乐意参与识字游戏活动,体验游戏的快乐。 活动准备:1、教学挂图:小猫的信、小狗的信共三封。2、汉字卡片:早上、中午、晚上。 活动过程: 一、欣赏故事《小猫和小狗的信》初步了解阅读内容。 1、教师讲述故事的第一、二段至小狗说:“我知道小猫要说什么?” (出示小猫给小狗的信)师:小朋友,你知道小猫子信里说了些什么? 大家阅读小猫的信,请个别幼儿上来说说:小猫给小狗的信里说了什么?
《醒来了》这一活动是主题《春天,你好》中的第五个活动,前面的四个活动,如《春游去》、《春回大地》、《郊游》等都已让幼儿充分感受到了春天给人们带来的快乐,春天的勃勃生机,使幼儿进一步萌发了对大自然的热爱之情。尤其是小动物 ,幼儿天生喜欢,但是春天来了,小动物们都怎么样了?出来了没有,它们又在干什么?这一切的问题都在吸引着幼儿,去求知、去探索。《纲要》中明确规定:教师应成为幼儿学习活动的支持者、合作者、引导者;教师还应敏锐地捕捉到孩子们在日常生活中新的关注点、兴奋点和新的发展需要,适时适宜的组织活动,培养孩子的好奇、好问、乐于探索的精神等。基于此,《醒来了 》这一活动是前几个活动的深化、升华。通过这一活动的组织,不仅能进一步增进幼儿对动物与季节变化的认识,还能使幼儿通过不同形式的学说 故事 角色的对话。强化语言的学习,增加对动物的情感认识及对文学作品的喜爱,从而在趣味性活动中自然地突破本活动的重点与难点。
开始部分主要是利用幼儿的以往经验,从复习儿歌认识中国地图开始,知道中国是个多民族的国家(重点是让幼儿知道除了汉族外,其他的各个民族都是少数民族。教师用意在使幼儿理解民族大团结),引入本课的具体内容,(请来四个做客的民族娃娃,让幼儿猜一猜他们来自哪里,客人说出自己从哪里来)认识四个民族在地图上的大概位置。这样通过大地图(中国)→许多民族→四位客人。一步步深入到课题,吸引幼儿,激发幼儿学习的欲望。 基本部分是让幼儿认识各民族的服饰特征与生活习惯,通过认识、巩固加深幼儿印象。可以先让幼儿观察幻灯片,由教师的导语让幼儿尝试,进一步仔细观察挂图,在幼儿回答的基础上由教师小结,由此培养幼儿的观察能力与表达能力。然后是复习巩固,通过自制幻灯片的添色游戏,调动幼儿兴趣,快速辨认并参与游戏,这样幼儿既动手参与了游戏、活跃了课堂气氛,又复习了新课。最后为了丰富知识,让幼儿大致了解他们的音乐及舞蹈,这样满足孩子爱唱爱跳的欲望,培养音乐的感受力及欣赏、创编的能力,老师应跳出各民族的舞蹈风格,用情绪与动作感染幼儿,活跃课堂气氛。
《幼儿园教育纲要》语言领域中提出 发展幼儿语言的关键是创设一个能使他想说、敢说、喜欢说、有机会说并能得到积极应答的环境 ” 以及要 “ 鼓励幼儿大胆、清楚地表达自己的想法和感受,发展幼儿语言表达能力和思维能力。听说游戏是为培养幼儿倾听和表述能力而专门设计的以游戏的形式组织的语言教育活动。根据这一目标和要求,结合大班幼儿的年龄特点和语言发展水平,制定了本次活动的目标:1 协助幼儿进一步提高迅速串接儿歌及仿编儿歌的能力。2 要求幼儿愉快地参与游戏活动,并遵守游戏规则。3 引导幼儿和同伴协调、友好地共同游戏。
说教材 ①说教材所处的地位和作用 本节内容在全书和章节中的作用是:《__________》是__________版__________教材第__________册第__________章第__________节的内容。在此之前,学生已学习了__________基础,这为过渡到本节的学习起着铺垫作用。因此,本课题在中占据极其重要的地位, 本课题前面承接本教材的__________部分,后面是本教材的 __________ 部分,所以学好本课题为以后__________的学习打下了坚实的理论基础,在整个教材中起到了承上启下的作用。
屈原是我国战国末期著名的诗人,政治家,是中国历史上第一位伟大的爱国诗人,中国浪漫主义文学的奠基人,被誉为“中华诗祖”、“辞赋之祖”。他的作品《离骚》《九歌》《九章》《天问》是中国浪漫主义文学的源头,屈原的出现,标志着中国诗歌进入了一个由集体歌唱到个人独创的新时代。屈原是战国末期的政治家,他主张对内举贤能,修明法度,对外力主联齐抗秦。他的治国主张得不到楚怀王的信任。后遭贵族排挤,被流放沅湘流域。屈原满怀报国之志却无处施展抱负,最后郁闷难当,于农历五月初五那天,跳汨罗江自尽。他的自尽,激发了楚国上下的一片哀怨,人们纷纷划着龙舟到汨罗江寻找打捞屈原的尸体,很多人担心屈原被河里的鱼虾吃掉,纷纷把家里的糯米和糕点做成粽子包裹起来,丢到河里喂鱼,这就是端午节的来历。
学习航天精神,攀登科学高峰老师、同学们:大家上午好。今天我演讲的主题是“学习航天精神,攀登科学高峰”。600多年前的明朝士大夫万户——人类第一个尝试飞天梦想的中国人。虽然,他的生命随着轰鸣化作了一缕轻烟,然而他的名字却记录在人类飞天梦想的起点上。600多年后,中国一代又一代的航天人,翻越飞天道路上一个又一个障碍,将先人的梦想变成了现实。每一次壮丽腾飞,托举起的都是中华民族的飞天梦想。“神九”的火焰仿佛还萦于昨日,巨响轰鸣带着国人的梦想步向太空,这一切的一切仍未尘埃落定,“神十”就已经带着前辈的扬尘奔向穹宇。鹰击长空,白虹贯日,我们只能见诸荧屏;神箭洞天,回声轰隆,我们也许觉不出那震动,但我们的内心却同样震撼。美国人完全垄断载人航天事业的神话完全被神舟翔天所打破,中国将在未来的太空中,绽放出最为绚丽的光彩。一次又一次的遨游太空,我不禁想问,什么才是真正的航天精神?
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.
学习快乐吗?我想很多学生的回答是“不快乐”,为什么呢?看看我们沉重的书包就有了答案:它里面装满了早起晚睡、作业考试、成绩评比、特招重点等等,所以有人形象的说它是我们身上的负担和包袱,压得我们喘不过气来!果真如此吗?当我们静下心来冷静的想一想,就会得出另外一种答案:沉重的书包是我们人生的智囊、自信的源泉、远大的抱负!我们说学习苦,是因为我们仅仅从生理的角度去衡量它,苦于没有时间看电视、泡网吧、玩游戏、苦于没有时间贪睡、贪吃、贪玩,总之一句话,苦于没有时间贪图享乐!固然,吃喝玩是快乐的,但这种乐趣只是低级的、物质的、短暂的,是动物本能式的快乐,作为人类享受高级的、持久的快乐,应该是精神领域的快乐,她能陶冶情操、让我们自信自强,使我们生活得更幸福!如何获得,只有学习、学习再学习!
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。