二、教学目标1、知识目标:认识提土旁,正确认识课文中的9个生字,积累9个词语。2、能力目标:正确,流利地朗读课文;能在田字格中正确描写4个左窄右宽的字;能用一二句话说说春天的迷人景象。3、情感目标:体会春雨中乡村的迷人景象。三、说教学重点:1、能运用多种方法识记本课9个生字,积累9个词语。2、正确,流利的朗读课文,并能读出感情。四、说教学难点:1、体会春雨中乡村的迷人景象。2、用一二句话说说春天的迷人景象。五、说教法学法新的《幼儿园教育纲要》指出:教师应成为幼儿学习活动的支持者、合作者、引导者。活动中应力求形成合作探究式的师生互动、生生互动。因此,活动中除了以积极饱满的情绪影响孩子外,我精选了以下几种教学方法:1、根据幼儿的具体形象思维占主要地位的特点和幼儿语言发展的特点,我采用视听唱玩法,引导幼儿在观察生动形象的图片,充分地刺激幼儿的视觉,用语言和音乐熏陶帮助他们轻松地理解课文内容。
三、服务群众,提质增效一是主动作为,助力优化营商环境。青年干部认真落实企业诉求快速响应机制,并在老组员的指导下精准及时响应平台内的企业诉求,并提供解疑释惑的贴心服务,为优化我市营商环境舔砖加瓦。另一方面青年干部主动担起“推广大使”职责,积极推广商事登记全程“网上办”、“AAA智能办”、执照智能审批、执照快递上门等服务内容,并通过线上网办咨询与办事大厅线下服务有机结合,耐心指导群众办事实现“免预约”“全天候”“不见面审批”,以数据的多跑路切实减少了群众的少跑腿,青年干部以实际行动推动数字政府建设不断深化。二是强化监管,确保食品安全落实到位。在老组员的带领下,青年干部积极深入开展食品监督抽检1564批次,并参与创建国家食品安全示范城市工作,通过定制并不断更新市食品安全“两个责任”落实信息公开栏,专门印发“两个手册”(《包保干部工作手册》和《企业落实食品安全主体责任工作手册》),落实食品安全“两个责任”,并推动完成创建广东省食品安全示范县验收工作。
真正的寒冬开始了,大家穿戴都比较严实,遮挡了视线,手脚也不够灵活了。在这样的情况下,万一出现意外比较难以应对。在此,我和大家讲讲学校冬季安全小知识。一、行路安全由于早晨大雾茫茫,或者冰冻,影响了汽车的刹车性能。因此,步行外出时要注意,一定要靠路边行走。横过马路时,要注意来往车辆,不要斜穿、猛跑;在通过十字路口时,不得横过马路。冬天更不要在结有薄冰的湖面、河面、小溪边玩耍,这样最容易出事。二、运动安全冬季长跑是一项不错的体育运动,但是在长跑锻炼前准备活动一定要充分,并系好鞋带。锻炼后还要做整理活动,同时一定要注意保暖,以防感冒。我们还需要特别注意,在集体长跑中,不可以推推搡搡,或者手插在口袋里,或者一边跑步一边讲话,这样很容易发生意外,也不利于健康。
过度:诚如牛顿所说 我之所以能够取得今天的成就有很大原因是站在巨人的肩膀之上设问3:为什么这个时代选择了达尔文来完成这一伟大的发现呢?(达尔文的个人努力)补充材料:(1831年起,他随“贝格尔号”考察舰进行环球考察5年。考察结束后,在整理考察资料和实物标本的基础上,经过长期的研究,于1859年出版了《物种起源》一书,确立了生物的进化论说明达尔文的个人努力:学习、考察、学习、不迷信权威、勇于挑战、不断探索的精神,饱览群书,挑战和假设建立在大量的阅读和观察的基础上,科学实证等等。可以说达尔文身上有那个时代的一个浓缩的特征,当然他还有点运气,不过,机遇永远是为那些有准备的人提供的。)探究:达尔文“进化论”的影响思路引领:科学理论发展的影响可以从哪些方面分析?(经济、科学理论本身、人文学科、社会影响(对宗教,社会),对其他国家的影响)设问:达尔文进化论对1859年及以后的社会带来了非常深远的影响。有哪些影响呢?①挑战封建神学的神创世,促进人类认识的飞跃
设问:你怎么看待这个问题的?(这是达尔文没有想到的,是有人利用了达尔文的学说,科学应该与其区分开来,但是科学家在研究时,既要做到为追求真理不断探索,又要有一定的人文精神,比如我们只有以人为本,才能找到解决当今社会面临的诸如环保、战争、饥荒等问题的途径,才能构建防止核物理技术、克隆技术、信息技术、生物技术、太空技术等可能对人类造成不可逆转的破坏作用的思想基础、决策机制和社会条件。更重要的是社会和国家应该对此有足够的认识,正因为此,所以现在当一项科学发明出台后,就会有一些法律出台,限制其可能的非人道用途。但是这些影响应不成为我们进行科学探究的阻碍。)(3)科学与宗教的斗争设计意图:再次引导学生认识,科学的探索永无止境,同时也再次认识宗教和科学理论产生的原因。材料1:1972年,美国加利福尼亚教育部竟明文规定,中学生物学课本除进化论外,必须还有神创论的内容,而且两者的页数要各占一半。
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
知识与技能To teach the words in the house : sofa table chair box cupboard shelf . Pron. on in under near
青年应该勇于放飞梦想,追逐梦想。周总理的“为中华之崛起而读书”和马丁·路德·金的“我有一个梦想”等启示我们:年轻人绝不能缺少梦想。梦想是什么?就是有目标。我一直相信,目标比努力更重要。有个故事是这么说的:有个人好不容易揽到了一个工程,他便加班加点、认认真真的施工。完工后,不但没赚到钱,还挨了一顿揍。什么原因?人家让他挖一口井,他把图纸看倒了,盖了个烟囱。“磨刀不误砍柴工。”没有明确目标、找不准方向,就急于出发、急于求成,最终的结果很有可能就是南辕北辙,无功而返。我们伟大的中国梦也是有具体目标的,作为青年一代的我们,是实现目标的生力军,所以我们应该追梦,但更要正确的追梦。
青年应该勇于放飞梦想,追逐梦想。周总理的“为中华之崛起而读书”和马丁·路德·金的“我有一个梦想”等启示我们:年轻人绝不能缺少梦想。梦想是什么?就是有目标。我一直相信,目标比努力更重要。有个故事是这么说的:有个人好不容易揽到了一个工程,他便加班加点、认认真真的施工。完工后,不但没赚到钱,还挨了一顿揍。什么原因?人家让他挖一口井,他把图纸看倒了,盖了个烟囱。“磨刀不误砍柴工。”没有明确目标、找不准方向,就急于出发、急于求成,最终的结果很有可能就是南辕北辙,无功而返。我们伟大的中国梦也是有具体目标的,作为青年一代的我们,是实现目标的生力军,所以我们应该追梦,但更要正确的追梦。
(一)观图激趣、设疑导入 师:同学们,今天和老师一起完成一个知识大比拼的游戏,(PPT课件出示)准备好了吗?1、填空。15∶3=( )∶( )2∶3=( )÷( )0.2=( )∶2=( )÷62、根据比例的基本性质,把下列各比改写为乘法等式。3:8=15:40 x:4=1:2生:准备好了。师:现在我们开始。师:今天和老师学习怎样解比例。(板书课题:解比例)【设计意图】这种方法的导入,让学生更快、更集中注意力奔向主题,没有渲染的成分,简单实用。(二)探究新知1、自学解比例的意义师:阅读教材第42页,理解什么叫做解比例。生:求比例中的未知项叫做解比例。教师板书:求比例中的未知项叫做解比例。2、学习例2,应用比例的基本性质解比例。(1)出示例2的PPT课件。法国巴黎的埃菲尔铁塔高度约320 m。北京的世界公园里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1∶10。这座模型高多少米?(2)理解题意,弄清模型的高度∶原塔高度=1∶10。师:同学们,你是怎样理解题目中1∶10的?生:题目中告诉我们1∶10是埃菲尔铁塔模型的高度与原塔高度的比。师:你能根据题意写出比例关系式吗?生:根据题意列比例关系式:模型的高度∶原塔高度=1∶10。师:这个关系式用数字该怎样表示?生:老师,在这个比例中我只知道三个数字,模型的高度的数量我不知道是几呀?师:这位同学观察得很仔细,哪位同学愿意帮助他解决这个问题?生:老师我想用字母x代替模型高度的数量,您看可以吗?师:好的,你的想法非常的好,也很正确!师:题目中告诉我们原塔高度是多少?生:320 m。
一、本节内容在教材中所处的地位和作用:本单元是在学生理解了四则运算的意义和学会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,是学生又一次接触初步的代数思想,这既是对所学四则运算意义和数量关系的进一步深化,又是为今后学习代数知识作准备,在知识衔接上具有重要作用。而这一节恰好在这一单元之中起着承上启下的作用。二、 教学目标:1、在具体的活动中,体验和理解等式的性质,会用等式的性质解简单的方程。2、结合有关黔金丝猴的数量情况,对学生进行保护珍稀动物方面的教育。3、培养学生的观察、讨论、推理、合作交流能力。三、重点难点:重点:解简单方程、用方程解决问题。因为方程知识与现实生活联系比较紧密,同时是今后学习代数知识的基础,所以把解简单方程作为本节重点。
教学新课1.教学例2。出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。2.教学例3。出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。3.教学“试一试”。提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。4.小结方法。提问:你认为根据比例的基本性质要怎样解比例?巩固练习1.做“练一练”。指名四人板演。其余学生分两组,每组两道题,做在练习本上。
首先,学生阅读教材第74 页,教师引导学生交流:塑料垃圾危害这么大,我们能完全不使用塑料制品吗?如果完全不使用塑料制品, 我们的生活会变成怎样呢?生活中我们离不开塑料制品,那要怎样合 理使用呢?板书: 减少塑料袋的使用量,尽量使用塑料制品的替代品。然后, 结合课前调查和收集到的有关塑料制品的替代品,先小组讨论交流:在生活中有哪些塑料制品的替代品呢?再全班汇报交流, 教师相机引导。设计意图:引导学生了解生活离不开塑料制品,但要合理使用, 减少塑料袋的使用量,尽量使用塑料制品的替代品。环节三:课堂小结,内化提升 学生谈一谈学习本节课的收获,教师相机引导。 设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。
还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式(将未知数的系数化为1),这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)5、提出问题:我们观察上面方程的变形过程,从中观察变化的项的规律是什么?多媒体展示上面变形的过程,让学生观察在变形过程中,变化的项的变化规律,引出新知识.师提出问题:1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东湖旅游,如果单独租用40座的客车若干辆则刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程x40-x+4050=1,解得x=360,答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.
解:设每张300元的门票买了x张,则每张400元的门票买了(8-x)张,由题意得300x+400×(8-x)=2700,解得x=5,∴买400元每张的门票张数为8-5=3(张).答:每张300元的门票买了5张,每张400元的门票买了3张.方法总结:解题的关键是熟练掌握列方程解应用题的一般步骤:①根据题意找出等量关系;②列出方程;③解方程;④作答.三、板书设计本节课的教学先让学生回顾上一节所学的知识,复习巩固方程的解法,让学生进一步明白解方程的步骤是逐渐发展的,后面的步骤是在前面步骤的基础上发展而成的.然后通过一个实际问题,列出一个有括号的方程,大胆放手让学生去探索、猜想各种解法,去尝试各种解题的途径,启发学生在化归思想影响下想到要去括号.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.三、板书设计1.公因式多项式各项都含有的相同因式叫这个多项式各项的公因式.2.提公因式法如果一个多项式的各项有公因式,可以把这个公因式提到括号外面,这种因式分解的方法叫做提公因式法.本节中要给学生留出自主学习的空间,然后引入稍有层次的例题,让学生进一步感受因式分解与整式的乘法是逆过程,从而可用整式的乘法检查错误.本节课在对例题的探究上,提倡引导学生合作交流,使学生发挥群体的力量,以此提高教学效果.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。