一、教学内容:两位数减一位数和整十数(不退位)(课本第67页)。二、教学目标:1、知识与技能:让学生经历探索两位数减一位数和整十数(不退位)的计算方法的过程,掌握计算方法,能正确地口算。2、过程与方法:让学生经历自主探索、动手操作、合作交流等方式获得新知的过程,积累数学活动的经验,体会数学知识与日常生活的密切联系,增强应用意识。3、情感态度与价值观:进一步培养学生学习数学的热情,以及积极思考、动手实践并与同学合作学习的态度。三、教学重点:掌握两位数减一位数和整十数(不退位)的口算方法。四、教学难点:理解算理,把握两位数减一位数与两位数减整十位数在计算过程中的相同点与不同点。五、教具准备:课件、题卡、等。六、教学过程:(一)、创设情境,提出问题。
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.问:此题目还可以 如何画出图形?作法二 :(1)在四边形ABCD外任取一点 O;(2)过点O分别作射线OA, OB, OC,OD;(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得 ;(4)顺次连接A ′B′、B′ C′、C′D′、D′A′,得到所 要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD内任取一点O;(2)过点O分别作 射线OA,OB,OC,OD;(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,使得 ;(4)顺次连接A′B′、B′C ′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习 活动3 教材习题小结:谈谈你这节课学习的收获.
①分别连接OA,OB,OC,OD,OE;②分别在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③顺次连接A′B′,B′C′,C′D′,D′E′,E′A′.五边形A′B′C′D′E′就是所求作的五边形;(3)画法如下:①分别连接AO,BO,CO,DO,EO,FO并延长;②分别在AO,BO,CO,DO,EO,FO的延长线上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③顺次连接A′B′,B′C′,C′D′,D′E′,E′F′,F′A′.六边形A′B′C′D′E′F′就是所求作的六边形.方法总结:(1)画位似图形时,要注意相似比,即分清楚是已知原图与新图的相似比,还是新图与原图的相似比.(2)画位似图形的关键是画出图形中顶点的对应点.画图的方法大致有两种:一是每对对应点都在位似中心的同侧;二是每对对应点都在位似中心的两侧.(3)若没有指定位似中心的位置,则画图时位似中心的取法有多种,对画图而言,以多边形的一个顶点为位似中心时,画图最简便.三、板书设计
二是加强扶贫救助工作,保障困难群众的基本生活。要从关注困难群众生活需求出发,对申请低保人员和特困人员及时进行摸底调查,加快信息核对和上报工作。对突发性困难家庭和个人,简化申请程序,采取“先行救助”方式直接实施临时救助。充分发挥好城乡最低生活保障金、临时救、大病救助等救助政策,有效解决困难群众的暂时性生活困难。三是精准施策,做好新形势下就业创业工作。要运用动态的观念,准确掌握每个失业人员状况,根据个人的实际情况及需求,提供一对一就业援助服务;对有求职愿望的失业人员提供每月不少于*次的岗位推荐服务,对有学习培训意愿的失业人员,推荐参加各项技能培训;切实落实各项补贴,为符合办理条件的失业人员办理各项就业援助补贴;对辖区企业进行信息采集工作,积极开发就业岗位,多途径多渠道促进就业。四是多管齐下,做好政务服务工作。
在今后的工作中,我将认真贯彻落实落省市区关于深化放管服改革的部署和要求,着力在简化办事流程、提高工作效率、优化服务效能上下功夫,重点做好以下工作:一是加强政治理论和业务政策学习,坚持学深悟透、学以致用,切实把思想和行动统一到完成年度工作目标任务上来,进一步转变工作作风,加强作风建设,提高工作效能、确保街道政务服务工作健康有序进行。二是加强扶贫救助工作,保障困难群众的基本生活。要从关注困难群众生活需求出发,对申请低保人员和特困人员及时进行摸底调查,加快信息核对和上报工作。对突发性困难家庭和个人,简化申请程序,采取“先行救助”方式直接实施临时救助。充分发挥好城乡最低生活保障金、临时救、大病救助等救助政策,有效解决困难群众的暂时性生活困难。
二是加强扶贫救助工作,保障困难群众的基本生活。要从关注困难群众生活需求出发,对申请低保人员和特困人员及时进行摸底调查,加快信息核对和上报工作。对突发性困难家庭和个人,简化申请程序,采取“先行救助”方式直接实施临时救助。充分发挥好城乡最低生活保障金、临时救、大病救助等救助政策,有效解决困难群众的暂时性生活困难。三是精准施策,做好新形势下就业创业工作。要运用动态的观念,准确掌握每个失业人员状况,根据个人的实际情况及需求,提供一对一就业援助服务;对有求职愿望的失业人员提供每月不少于*次的岗位推荐服务,对有学习培训意愿的失业人员,推荐参加各项技能培训;切实落实各项补贴,为符合办理条件的失业人员办理各项就业援助补贴;对辖区企业进行信息采集工作,积极开发就业岗位,多途径多渠道促进就业。四是多管齐下,做好政务服务工作。要把“群众办事是否方便”作为衡量改革成效的重要指标,做好“最后一公里”服务,持续推进“放管服”改革。
2. 初步学习有感情地朗读和表演。重点和难点: 让幼儿感受和体验作品温馨、关爱的情感基调。设计思路: 中班幼儿思维具体形象、情绪易受感染。因此,我们在设计活动时,运用了情景渲染法,创设一个宁静、温馨的家庭氛围,通过生动形象的表演,使作品中的人物、景物鲜明可见,让幼儿产生一种身临其境的感觉,使他们在作品的人物情感中找到自己,在感受和体验的基础上,逐步从情感的感染过度到对行为的主动调节。活动准备:请大班幼儿事先排演好情景表演
Choose the best choice fromA to F to finish the dialogue. You have one more answer. Each choice should beused only once.A: Hello, I’m a schoolnewspaper reporter. May I ask you some questions?B: ____46____
B: It’s about theexperiments three astronauts are doing on the space station.A: That’s great. I’minterested in space, so I want to be an astronaut like them.
三、下一步工作打算在今后的工作中,我将认真贯彻落实落省市区关于深化放管服改革的部署和要求,着力在简化办事流程、提高工作效率、优化服务效能上下功夫,重点做好以下工作:一是加强政治理论和业务政策学习,坚持学深悟透、学以致用,切实把思想和行动统一到完成年度工作目标任务上来,进一步转变工作作风,加强作风建设,提高工作效能、确保街道政务服务工作健康有序进行。二是加强扶贫救助工作,保障困难群众的基本生活。要从关注困难群众生活需求出发,对申请低保人员和特困人员及时进行摸底调查,加快信息核对和上报工作。对突发性困难家庭和个人,简化申请程序,采取“先行救助”方式直接实施临时救助。充分发挥好城乡最低生活保障金、临时救、大病救助等救助政策,有效解决困难群众的暂时性生活困难。
1、教学对象,九年级学生,实践课 2、近几年随着体育加试的进行,尤其是今年又把跳绳例如体育加试项目。九年级学生,通过前段时间的学习,体能普遍较好,对跳绳有关的练习方式都有较强的兴趣。 跳绳方面,基本的正摇跳,长绳的双人摇跳、多人摇跳等技术动作有较好的基础。大部分学生具备了向较高一层次难度发展的条件。比如:正摇跳,长绳的双人摇跳、多人摇跳多跳等,这些技术动作学生都有较浓的兴趣。 3、另外中考体育加试的需要,学生学习跳绳的热情、组织纪律、认识能力、身体素质相对其他年级有一定的优势。因此,我根据学生的实际情况,安排本节课的内容,让学生能更好的接受本次课的教学。另一方面,九年级学生正处自身发育的高峰期,灵敏,协调素质的快速增长有可性强的特点,跳绳恰好有此方面的锻炼价值,这更增加提高了学生对跳绳的热爱。同时也使我国民间体育得到更好的发展。
[教学目标]1.知识与技能:巩固 100 以内数的认识,进一步理解数位和位值的含义,发展学生有序的思维能力,以及培养他们的归纳能力。2.过程与方法:学生经历“摆一摆、想一想”的主动探索的学习过程,探索出100 以内数的特点及规律。3.情感、态度与价值观:在实践操作中,通过找规律来发展学生的初步抽象思维能力。[重点难点]1.教学重点:进一步理解数位和位值的含义,发展学生有序的思维能力,以及培养他们的归纳能力。2.教学难点:发展学生有序的思维能力。[教学准备] 课件、数位表、磁力扣、围棋子(每人3 颗)。[教学过程]一、激趣导入1.用 1 颗棋子摆数。师:今天,我给同学们请来了一位好朋友,你们看!课件演示:同学们,大家好!我是围棋宝宝,今天我来和大家一起学习,你们高兴吗?这是你们学过的数位表吧?我也来看看!(围棋子跳到个位上)你们知道我现在表示几吗?为什么?生:表示 1,因为个位上有 1 个。
尊敬的各位领导、各位老师、亲爱的同学们:大家早上好!你会用什么词来形容秋天呢?金灿灿、秋高气爽、秋风瑟瑟,对!这些就是秋天独有的景色。秋天还是收获的季节,春华秋实,有种子,有积累,有沉淀,才能有收获。学习、人生都如此。不管你是初来乍到的新生,还是在这里已经学习了一两年的学哥学姐,都会在10月8日迎来学部的第一次月考。一听考试,你们现在是不是已经感受到了秋风瑟瑟啊?其实,这是很正常的心理反应,老师今天就想说说考试这个事。首先,面对考试的态度要乐观。每个人是独特的,学习的能力是不同的,学习的基础也有差异,自然学习就有快有慢。在学习时,既需要有好的竞争氛围,又不能一味的去和别人比较,为什么人家背一会儿就会背了,我怎么背不会?为什么人家一听课就会做题,正确率还很高,我怎么就不行?一旦产生了这些消极的想法,就会阻碍学习。我们学习是为了将来更好的生活、是为了获得学习能力。因此,找准自己的位置,向榜样学习,认真做好自己,乐观面对考试,就显得特别重要。只要努力了,就无愧于心,就能让家长放心,就能回馈老师,加油吧,孩子们!
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。