活动重点:找出各种线的特点 活动难点:根据线的某个特征进行分类。 活动准备:1、幼儿收集各种线,丰富相关知识。(如毛线、中国结线、棉线、钓鱼线、电线、尼龙线)2、幼儿操作材料:分类卡、笔、各种各样的线。3、电视机、视频 活动过程:一、导入活动,展示事先收集的各式各样的线。1、师:找出你认识的线,和同伴交流,说说它是什么线?有什么用?什么样子的?
教学准备: 正方形纸、小刀。 教学过程: (一)变魔术 让幼儿猜想正方形能不能变成三角形、小正方形、长方形。然后将纸折叠,剪开变为各种图形。 将剪开的图形再拼成正方形。
活动目标:1、激发幼儿与同伴交流和分享的兴趣,帮助幼儿获得基本的交流经验。2、鼓励幼儿大方的把自己喜欢的车介绍给大家,并乐于想象未来的车。3、引导幼儿了解自己喜欢的车的名称、样子和用途,并尝试粘贴公共汽车。活动准备:1、请幼儿搜集各种汽车模型并布置成“汽车城”。2、各种汽车图片、小标志。3、录音机、音乐磁带《汽车开来了》、故事《神奇的变形车》磁带。
活动准备: 装有冷水和热水的瓶子各10个,热水袋、冰块各一份,布袋两个,各种物品图片大小各一份。活动过程:一、布袋里的秘密1、师:今天,老师带来了两个布袋袋,里面藏着小秘密,你们想不想知道? 请两名幼儿来摸摸,说说摸到了什么?2、教师出示热水袋和冰块,让孩子们摸摸,说说感觉。3、你喜欢冷冷的还是热热的?4、小结:冬天到了,我们喜欢热热的,天气热了,我们就喜欢冷冷的。
[活动目标] 1、培养幼儿用肥皂洗手的良好卫生习惯。 2、通过幼儿的自主探索活动,使幼儿知道肥皂的外形特征及用途。 [活动准备] 各式各样的肥皂及肥皂盒若干;各种旧玩具、旧手绢等;吹泡泡玩具瓶(与幼儿人数相等);“我爱洗澡”音乐及磁带、录音机;盛玩具的小筐若干;干净毛巾(与幼儿人数相等)、盛水的大水盆六个,小方布一块,剪好的小红星若干。 [活动过程]1、《我爱洗澡》音乐,老师与幼儿做动作进入活动室。 (1)老师吹泡泡引起幼儿兴趣。 (2)出示肥皂并请幼儿描述。(请幼儿自由发言) (3)出示多种多样的肥皂,让幼儿观摩。老师引导幼儿观察肥皂形状、颜色、气味,并用手摸摸,说出感觉。(幼儿分别发表自己的意见)
活动目标: 1、通过观察、寻找、分析,了解容易使鸟儿死亡的原因,培养幼儿的探索欲望。 2、愿意大胆表达自己的猜测,并乐意和同伴交流自己的发现。 3、萌发幼儿爱护鸟儿、保护鸟儿的意识。 活动准备: 1、保护好画眉鸟死亡的现场。 2、供幼儿记录的纸、笔。 活动过程: 一、谈话引出话题 师:刚才我们班里发生了一件什么事情?我们班的画眉鸟死了,你的心里有什么感受? 二、讨论猜测小鸟的死因 1、上午的时候小鸟还是活着的,我们午睡的时候它就死了,你认为是什么原因使小鸟死掉的呢?(幼儿自由探讨) 2、幼儿自由猜测发言,师在黑板上帮助幼儿记录
【活动准备】 瓶子、米粒、豆子、图案贴纸(用于装饰瓶子)、背景音乐《白龙马》、乐器幻灯片 【活动过程】 一、童话故事导入。圣诞节到了,小企鹅和金丝猴收到了圣诞老人送给他们的礼物。小企鹅受到了一盒巧克力,金丝猴也收到了一个包装很漂亮的礼物,高兴地打开看,原来里面装着一个普通的瓶子,他有点太失望了。圣诞老人笑呵呵地说:“金丝猴,你可别小看这个瓶子,它叫“铃铛乐器”,他很神奇呢!接着,圣诞老人唱起歌来,还不停地摇动瓶子伴奏。金丝猴一看,原来这是用瓶子制作的“铃铛乐器”啊,金丝猴开心地笑了起来。小朋友我们也来做一个吧! 二、认识材料:瓶子、漏斗、米粒、豆子、图案贴纸。
首先学习第一部分,先让学生自由朗读课文,想象雾淘气的样子。欣赏大雾图片,看图说话是第一段的训练重点。出示许多形态各异的大雾图片,引导学生运用学过的好词好句描述自己最喜欢的一幅图,启发学生想象力,发展语言表达能力。
选编本文的目的,一是通过对故事情节的了解,感受鲜明的人物形象,从而体验阅读名著的乐趣;二是帮助学生在读书思考中领悟作者的表达方法。因此,根据课标和学段的要求,结合学生实际和课后练习,我制定了以下教学目标:1、掌握生字,理解词语的意思。2、有感情的朗读全文,概括课文主要内容。3、小组合作,分角色朗读课文,揣摩人物语言,初步体会人物
4、做个诚实的好少年,展示收集的诚信名言诚信是坚韧之石,擦出希望之火;是希望之火,点燃理想之灯;是理想之灯,照亮前进之路;是前进之路,给以积极上进的力量!人生有了诚信才更加迷人,生活有了诚信才更加灿烂,世界因为有了诚信才更加精彩。5、倡议书为了养成诚实守信的美德,我们六、三中队委员会提出倡议如下:对老师对家长不说谎,敢于向老师、家长暴露自己缺点,敢于讲心里话。独立完成作业,考试不抄别人答卷。做错了事要敢于承认,并认真改正。老师在和不在同样遵守纪律。不说违心话,不奉迎他人。办事讲信用,答应别人的事要做到。借别人东西要按时归还。行动遵时守约,开会、参加活动、赴约、作客不迟到。希望同学们积极响应中队委员的倡议,做一个诚实守信的好队员!今天的中队会在大家的努力下开得非常成功,达到预期的教育目的。活动之前,各小队通过种种途径查阅资料,并且通过多种形式来汇报自己的活动成果,活动的过程就是自我教育过程,我希望大家都能这次中队会为契机,都来说诚信,讲诚信,让真诚走进我们真实的生活。
学生已经深深意识到:勤俭节约刻不容缓,勤俭节约与自己的行为息息相关。在此基础上的第三篇章以“深化主题,提高学生思想认识”为目的。全体学生共同发出倡议,呼吁大家养成勤俭节约的生活习惯,然后在条幅上签字,向全体队员郑重承诺,与餐桌不文明行为告别,将本次活动推向高潮。以上三个环节由浅入深,层层递进,充分调动了学生的多种感官参与活动,促进了学生身心和能力的发展,顺理成章的达到了本次少先队活动的目的。2、总结讲话:最后中队辅导员做总结,结束本次活动。队员们,“勤俭节约”不仅仅是一种口号,不仅仅是因为我们的号召和呼吁。我们更希望它是一种情结,熔铸在你和我的心中。让我们在今后的生活中实实在在地做到“节约”,真真切切地杜绝“浪费”,牢记“舌尖上的文明”这六个大字,从我做起,从身边做起,从现在做起!活动结束后,班级开展以“勤俭节约”为主题的手抄报设计活动,使学生进一步理解本次活动的意义,把勤俭节约内容内化。
★教后记:历史教学的最高目标不是单纯的记忆和培养能力,而是树立正确的历史观,培养学生的历史责任感。从这一点讲,新课标及新课标教材给老师极大的发挥空间,摆脱了以往的“教教材”,真正实现了 “用教材教”,只有这样,教师才不只是一个“备课”的“教书匠”,而是一名设计教学“设计师”,以教材为砖瓦,建造有自己独特风格的教育大厦。这是我设计教学的出发点。开放式的课堂需要思想开放的教师,但对教师的课堂驾驭能力要求更高,否则“一放就活,一活就乱”,只求课堂热闹,热闹过后,学生一无所获,那么这样的开放课堂依然是失败的。开放式的课堂并不是任由学生说,教师必要的引导与客观的评价尤为重要。★问题解答⊙【学思之窗】请谈谈,火车机车的不断改进,给国民经济发展、百姓生活带来怎样的影响?答案提示:运输量大,有利于各地区的物资交流和劳动力流动,促进经济发展;交通便利快捷;机车内部环境舒适,给百姓出行带来方便。
一、教材分析作为世界观,辩证法昭示我们,世界是一个永不停息地运动、变化和发展的世界;作为一种思维方法,辩证法要求我们以批判精神和创新意识对待周围的世界。把握唯物辩证法的革命批判精神和辩证否定观的基本内涵,有助于我们自觉树立创新意识,有助于我们坚持解放思想、实事求是、与时俱进。二、教学目标1、知识目标:熟记:创新的社会作用;理解:创新的社会作用从几个角度分析的,如何分析的。2、能力目标:学会用创新的知识分析和认识事物的能力;通过学习辨证法的革命批判精神,使学生初步形成批判性思维,初步具 有在认识世界和改造世界的活动中逐步培养和形成自己的革命批判精神的能力和创新能力。3、情感态度和价值观目标:使学生坚信创新是唯物辨证法的根本要求,创新意识的哲学基础是唯物辨证法的否定观和唯物辨证法的革命批判精神
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
一、教材分析《意识的本质》是人教版高中政治必修四第5章第1框的教学内容,主要学习意识是客观存在的反映。二、 教学目标1.知识目标:识记意识的本质;理解意识是物质世界长期发展的产物、意识是人脑的机能、意识是客观存在的反映。2.能力目标:通过对意识起源和本质的原理学习,使学生逐步确立辨证唯物注意的意识观,具有正确认识意识现象、分辨物质和意识的界限、把握二者之间辨证关系的能力。3.情感、态度和价值观目标:牢固树立物质决定意识,意识对物质具有反作用的思想观点,坚定辨证唯物主义的信仰。三、教学重点难点意识的本质四、学情分析本框题的内容比较简单,主要是为学习第二框意识的作用作铺垫和准备的,所以,教师在讲这节课时不要在具体内容上花过多的时间。
2、让幼儿熟练地找出2—9个数的相邻数。3、进行朋友间团结友爱的教育。活动准备:1、1— 10的数字头饰一套,1—10的数字卡一套。2、已学会10以内的数字。活动过程:一、开始部分:师:小朋友,我们知道每个数子都有自己的邻居,前面一个,后面一个,前面的比它少1,后面的比它多1。今天,我们来做个游戏,看谁能快速的找出数字的邻居。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。