2、通过比较分析,理解长短粗细都是相对的,培养幼儿思维的精确性。 重点:了解不同材料的绳子的特性及用途。 难点:理解长短、粗细是相对的。【活动准备】 1 活动室的屋顶吸着用长短粗细不同的绳子拴着的气球。 2、多种材料的绳子头若干。 3、字卡“长”、“短”、“粗”、“细”。【活动过程】 1、“够气球”,引起幼儿对绳子的兴趣。 教师引导幼儿观察屋顶上漂亮的气球,鼓励幼儿跳起来将气球够下来。讨论:为什么有的气球能够着,有的气球够不着?(拴气球的绳子有长有短)拴气球的绳子是用什么材料做的?是什么颜色的?(毛线绳、棉线绳。。。。。。)。
【活动目标】 1、通过实验初步感知不同布的吸水性不同。 2、发展观察力和动手操作能力,激发对生活现象的好奇心。【活动准备】 1、各种质地的布块若干(棉布、纱布、绒布、尼龙布、麻布、塑料布等)及眼药水瓶若干。 2、挂图。【活动过程】 1、幼儿猜猜:换别的布做伞面,行不行? 2、幼儿分组观察各种布的区别。引导幼儿用眼睛看(颜色),用手摸一摸(厚薄、软硬、粗细),使劲拉一拉,听听它们会发出什么样的声音。请幼儿说一说自己都观察到了什么,有什么想法。
准备:·知识经验准备:幼儿已经认识了一些常见的植物·材料准备:中草药图片·重点:在植物中对中草药进行分类 过程·情境表演“医院”——教师饰“病人”因咳嗽去看病,“病人”不能吃西药所以幼儿饰“医生”开了一贴中草药“川贝止咳露”,“病人”吃后好多了。——小朋友,你们知道医生给我开的是什么?·感知了解 ——多亏医生给我开了中草药治好了我的病。今天还来了许多中草药朋友,大家用自己的好办法也去认识认识它们吗?
2、培养幼儿的发散性思维和动手构建能力。 3、激发幼儿对科学活动的兴趣。 活动准备: 1、常见桥梁图片两幅。 2、从网上下载的各种不同桥梁图片资料若干,电脑一台。 3、积木(每组两篮),作业纸每人一张。每人从家带来的小纸盒两个。 活动过程: 1、出示图片,引出关于桥梁的课题,了解几种常见桥梁的类型。(斜拉桥、拱桥、立交桥)
2、培养幼儿的动手操作能力和比较能力。3、引导幼儿通过摸摸、玩玩,感知纸的特性。 活动准备各种各样的纸若干,如卡纸、宣纸、绘画纸、皱纹纸、牛皮纸等。多媒体课件、即时贴、每组一盆水。 活动过程1、带领幼儿欣赏手工制品,引出活动主题。今天这里举办了手工作品展,我们一块去看看吧。提问:你看到了什么?它们使用什么材料制成的?他们虽然都是纸,让我们来找找什么地方不一样?
2.了解动物尾巴的作用。 【活动准备】 歌曲《小画家》磁带、故事《神奇的尾巴》磁带,各种动物身体和尾巴分开的图片(金鱼,松鼠,猴子,燕子,老牛,壁虎) 【活动过程】 一.今天老师给小朋友带来了一首好听的歌曲,咱们来一起听一下吧!(歌曲《小画家》) 提问:1.歌曲中的小画家是谁啊?(丁丁)2.丁丁画的什么?画的怎么样啊?(螃蟹四条腿,鸭子小尖嘴,兔子圆耳朵,大马没尾巴)3.丁丁是不是一个优秀的画家? 教师小结:丁丁做事不认真,没有认真观察,只说大话,所以没有画好,我们小朋友可不要向他学习。
活动准备: 各种常见水果若干、布袋、塑料水果刀、盘子、猕猴桃、黄桃、圣女果活动过程:一、摸水果 教师出示装有各种幼儿熟悉的水果的自制摸宝袋,请幼儿摸摸、说说自己从袋里摸到的是什么水果,它的外形是怎样的?它的味道如何?有没有香味?二、出示水果图案 教师出示某一水果的切面,请幼儿观察它的图案。
2、运用挂图和课件,初步理解并形成“半个月”的时间概念。 3、萌发对月相变化现象的好奇心和探究欲望,感受半个月里月亮形状变化的过程。 【活动准备】 1、兔妈妈和小兔玩偶、课件、单月的日历一张。 2、律动《月亮婆婆喜欢我》 3、《望着月亮吃大饼》故事挂图 【活动过程】 1、谈话导入,激发幼儿的兴趣。 “小朋友,今天我们班来了两位小客人,是谁呀?”(出示玩偶)“打个招呼吧!”“兔公公家盖房子,兔妈妈要去帮忙,小兔只能在家里等妈妈,它会怎么等妈妈呢?”(鼓励幼儿根据自己的想法大胆讲述)“平时,你的妈妈不在家,你会怎样等妈妈呢?” 2、教师完整讲述故事,幼儿欣赏,初步了解半个月的时间概念。 “小兔子怎样等妈妈呢?请听故事《望着月亮吃大饼》。”教师:“兔妈妈要多长时间才回来呢?你们知道半个月时间有多长呢?”(教师出示日历:我们一起来数一数日历,就知道半个月有多长了)除了用数日历的方法,兔妈妈还告诉小兔一个什么好办法呢?
二、 生成过程:1、 了解幼儿对哈气的已有经验:老师:为什么玻璃上能画画。幼儿兴奋地讨论着。嘉文:玻璃上有哈气。子萧:玻璃上有一层雾可以在雾上画画。王月恒:还有水珠留下来呢。(大多数孩子的已有经验就是哈气,但是哈气是什么,是怎样产生的?孩子不了解。我给孩子提出任务:寻找有关哈气产生原因,引导幼儿进行大胆的探索,并能主动相互交流。)2、 试验、探索:幼儿通过协商后共同分为三组进行试验,他们各自到自己感兴趣的组搜集有关材料。第一组的幼儿找来镜子、玻璃、和一杯水,把玻璃盖在杯子上,过了一会儿玻璃没有一点变化,孩子们纷纷议论没有产生哈气的原因。王子萧说:哈气是热气遇到冷空气才产生的,我们用热水试一试。孩子们从保温桶里接了温水,又从暖瓶里接了开水,分别把镜子、玻璃、放在两别水上。不一会儿工夫镜子、玻璃上发上了变化,嘉文急忙说:“你们快看,温水的镜子上有哈气,热水的玻璃上开始有哈气,一会儿就有水珠流下来了。“其他小朋友也分别交流自己的发现,并把实验结果用图画的形式表征下来。案,体现了《纲要》的指导思想让幼儿在活动中主动学
2、探索复制指纹的方法,萌发多样探索的意识。3、初步激发对科学、创造和探索自身的兴趣。材料环境创设:数字卡片、小纸片、颜料、印泥、橡皮泥、镜子、抹布等。设计思路:“我们的身体”是本班幼儿正在探索的主题活动,在探索小手的活动中,罗宜家提出了这样一个问题:“手指上的线叫什么呀?”但是,小朋友谁都说不上来。这是一个颇具价值的问题,因为它是我们在主题活动中生成的,有利于孩子们继续对自身进行探索的兴趣的培养。而且,现代的指纹技术正越来越与高科技融为一体,涉及到了很多方面,适当地在这方面丰富一些见识,不仅能开阔幼儿的眼界,且对于幼儿的科学探究兴趣也会有好处。另外,作为一个新班,我们的孩子们在探索能力上还显得很单一,缺乏运用多种方式探索的意识,本活动中鼓励幼儿大胆常识多种复制指纹的方法,对幼儿的多样化探索意识也是有帮助的。活动中,处于整合性原则,我还在其中,融合了识数教育,即观察时给手指纹编号,结合一切可利用因素进行自然衔接下的教育。拓展内化观察比较操作体验提问交流流程:1、提问交流:1)请罗宜家提出自己原先的问题。
2、学会主动关心照顾小树或大树。3、学会做观察记录。4、复习12以内的点数。5、认读树名。 活动准备:1、课前对园区树木进行观察,不同树上都挂有树牌(树的名称、树龄及生活习性)及编号(以便幼儿记录)。2、彩笔、图画纸、铅笔。3、幼儿卡(幼儿姓名、性别、年龄)。4、小桶。
活动目标:1、让幼儿初步了解磁铁的基本特性2、了解磁铁在生活中的用途3、培养幼儿的探索兴趣 活动过程:一引题师:小朋友,今天老师要带你们去一个很好玩的地方,但是去那个地方玩我们小朋友都要带上一样东西才能进去,我们看看我们要带什么东西进去?(教师出示磁铁)幼:磁铁师:现在小朋友们可以拿着磁铁进去玩了?你们看看会发生什么事?幼:好师:小朋友看看为什么磁铁吸不住这个东西啊?幼:因为它是木头的师:小朋友聪明,那你们看看磁铁为什么又不能吸住这个东西呢?幼:因为它是塑料的
幼儿在生活中,经常能接触到各种各样的图形,而且会询问这是什么图形,注重幼儿的兴趣和终身教育是我活动的两大特色,幼儿园是现代幼儿生活学习最为熟悉的环境之一。活动开始我就让幼儿观察我的挂图,挂图中有不同颜色的不同图形,由不同图形拼成的一幅画,是为了提高幼儿的感知能力,了解各种图形分别由什么特点。活动中教师一引导者的身份出现,对幼儿表达不清楚的或出现困难的地方加以纠正,耐心的指导,使每个孩子都能充分自主的参与活动中。 《图形找家》出自贵州人民出版社,新编学前班教材数学上册27页。这一活动属于操作型活动,关于图形认识及图形分类活动,可以在日常生活中随机组织练习,图形教育多与实物相结合,促进幼儿具体技能的发展。从不同的角度促进幼儿情感能力知识技能等方面的发展。
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。