学生已经学习了指数运算性质,有了这些知识作储备,教科书通过利用指数运算性质,推导对数的运算性质,再学习利用对数的运算性质化简求值。课程目标1、通过具体实例引入,推导对数的运算性质;2、熟练掌握对数的运算性质,学会化简,计算.数学学科素养1.数学抽象:对数的运算性质;2.逻辑推理:换底公式的推导;3.数学运算:对数运算性质的应用;4.数学建模:在熟悉的实际情景中,模仿学过的数学建模过程解决问题.重点:对数的运算性质,换底公式,对数恒等式及其应用;难点:正确使用对数的运算性质和换底公式.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入回顾指数性质:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么对数有哪些性质?如 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
对数与指数是相通的,本节在已经学习指数的基础上通过实例总结归纳对数的概念,通过对数的性质和恒等式解决一些与对数有关的问题.课程目标1、理解对数的概念以及对数的基本性质;2、掌握对数式与指数式的相互转化;数学学科素养1.数学抽象:对数的概念;2.逻辑推理:推导对数性质;3.数学运算:用对数的基本性质与对数恒等式求值;4.数学建模:通过与指数式的比较,引出对数定义与性质.重点:对数式与指数式的互化以及对数性质;难点:推导对数性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入已知中国的人口数y和年头x满足关系 中,若知年头数则能算出相应的人口总数。反之,如果问“哪一年的人口数可达到18亿,20亿,30亿......”,该如何解决?要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。2.掌握判定函数和函数相等的方法。3.学会求函数的定义域与函数值。数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。重点:函数的概念,函数的三要素。难点:函数概念及符号y=f(x)的理解。
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
学生在初中学习了 ~ ,但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到 ~ 范围内的角.但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.
本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会 的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。课程目标1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
(一)做好“线上+线下”文章,整合各方资源。借助电子商务平台,整合中药材地道产区资源,打造线上线下虚拟与实体相结合,编织成以金银花为主X道地中药材交易市场,让中药材交易超越时间、地域的限制,打造一个真正的实体与虚拟相结合的交易平台,真切推动群众受益,集体增收,企业增效,政府增税的,真正实现“四雁”同频共振,共同融合,共同发展。(二)加大“双招双引”力度,吸引“归雁”回巢。继续通过招商引才,招才引智,鼓励XX籍在外人员返回家乡创新创业、投资兴业、投智助业,通过载体创建、平台搭建,岗位设置、职业设定,引导他们助力家乡的振兴,建立好涵盖归雁工程宣传发动、登记入库、汇总分析、项目对接、成果推送、线上活动的“归雁人才平台”为统筹调度、制定政策、推动落实提供了科学化、智能化支撑。下一步,我镇将紧紧围绕发展这一主题,积极推动“四雁工程”在我镇落实落地,有效提高农民收入,壮大集体经济,为推动我镇乡村振兴、实现跨越发展打下坚实的基础。
(一)“一单两库一细则”建立情况根据“放管服”改革要求,我局持续对现有法律法规规章规定的检查事项进行梳理,于20xx年建设完善了线上及线下“一单两库一细则”,将法定的检查事项全部纳入随机抽查事项清单,做到“清单之外无检查”;将全市所有具有执法资格的执法人员、市场主体全部纳入双随机范围,做到“应入尽入无例外”;实现了检查事项、检查对象和检查人员“三个全覆盖”。线上依托市场信息系统,及时维护更新检查人员和市场主体信息,实时更新“两库”;线下指定专人负责,及时动态调整更新检查、执法对象名录,确保抽取科学性、合法性。(二)抽查模式、工作安排及执行情况目前我局在抽查模式分为线上、线下两种抽查模式,每月初由各具体执行部门,科学制定抽查计划,当月完成随机检查任务。
二、存在问题(一)文物保护经费未能纳入财政预算。按照相关文物保护法,县级以上人民政府应当将文物保护事业纳入本级国民经济和社会发展规划,所需经费列入本级财政预算。但由于县级财政困难,文物保护经费一直未能纳入财政预算。(二)日常维护措施落实难。县级文物保护机构专业技术人才不足,乡(镇、街道)基本无文物专业技术人员。一些日常维护措施还得不到落实。(三)保护和利用矛盾凸显。由于价值、产权等诸多原因,很多文物未能得到很好地利用,处于闲置或无人使用状态,无人使用或无管理单位的文物在管理中找不到管理相对方,一些安全隐患整改和日常管理等问题很难得到落实,县级文物行政主管部门很难发挥监督管理作用。(四)乡(镇、街道)、村(居)两级对文物保护工作主动性不够。乡(镇、街道)、村(居)两级没有文物保护机构,也没有落实专人负责管理。许多文物保护单位、未核定保护等级的文物缺乏日常维护,处于无人管理状态。
二、存在的主要问题(一)积极主动性不强。干事创业、自我加压的干劲不够,与各部门、子公司协调对接的积极性、主动性不够,争先创优、比拼赶超的拼搏度不够。(二)参谋助手较为被动。作为综合枢纽部门,前瞻性不够,研判性不够,应急应变也相对欠缺,参谋助手发挥有限。三、下步工作思路(一)高水平协调。以服务领导、服务集团、服务东城的“三服务”为出发点和落脚点,做好总调度,及时掌握动态,加强领导、部门和子公司之间的沟通联系,形成协同配合、整体联动的良好局面。办文上,严把程序关、格式关、文字关,文字表达力求“准、实、新”,切实提高集团办文质量。办会上,根据事项紧迫性、重要性程度,弹性会议时长,减少“文山会海”。办事上,分清主次和轻重缓急,有序协调,统筹推进,帮助领导从一般性事务中解脱出来,集中精力把大局、谋方向、促发展。
三是做大做强海产品自主品牌。工作队于xx年指导成立的冬松村海产品合作社,通过与消费帮扶平台合作,在工作队各派出单位、社会团体、个人支持下,已获得逾xx万元销售额。2022年底工作队推动合作社海产品加工点扩建的工作方案已获批,待资金下拨后将正式启动扩建工作。四是积极助企纾困,带动群众增收致富。工作队利用去年建立的xx镇产业发展工作群,收集本地企业在产品销售、技术、人力、资金、运营、用地等方面的需求,并加大xx支持乡村振兴力度,xx助理赴各村委开展多场xx政策支持乡村振兴宣讲活动,本季度有x万元助农贷款获批,xx万贷款正在审批中。在壮大既有产业的同时,完善联农带农机制,一方面鼓励企业雇用本地农户就业,另一方面计划与本地农户签订长期收购合同,让农民种得放心、种得安心,带动当地群众共同致富。
1.初步探究,找切入点:我抛出问题:周恩来为什么会立下“为中华之崛起而读书”这一志向?文中的哪个词最能体现?这个词在文中出现几次?通过多个问题的设置,培养学生的理解能力,学生通过自己读课文,很快就能找出本文的关键词“中华不振”,在文中出现2次,进而引导学生划出句子。 2.比较阅读,交流发现:让生反复阅读两个句子,比较两处出现的“中华不振”有什么不同,然后在班上交流自己的发现,通过仔细比较阅读会发现:第一次的“中华不振”是由伯父告诉周恩来的,第二次的“中华不振”是由周恩来自己亲身体会到的。这一环节的设置,进一步激发学生的探索意识,让学生学会在阅读中进行比较分析,进一步的理解内容,体验情感。3.默读课文,交流感受:新课程标准指出:要让三四年级学生学会默读,做到不出声,不指读。通过让生默读课文,边读边感受:文中的哪些句子能让你感受到“中华不振”?划出相关句子,然后在班上交流感受,通过交流,有的同学会说:我从伯父的话语中能感受,有的会说:从妇女的哭诉中感受【这一环节的设置,通过让生读课文,找句子,谈感受,加深对“中华不振”的理解,更深入的体会当时周恩来的心情,理解周恩来立下志向的原因。
四、说教法学法 1.教法:本课遵循教师为主导,学生为主体,训练为主线的原则,注意主体的参与,发展思维,培养学习能力,以达到教学目标,使用的方法为:情境教学法、直观演示法、合作探究法,品词析句法、以读带讲法,练习法,讨论法,指导法等激发学生学习兴趣,充分发挥学生的主体作用,提高课堂教学效率。 2.学法:指导学生运用读、思、划、议、说,同桌互学,小组合作等方法。五、说教学过程:(一)创设情景,导入新课。 同学们,当你按动遥控器看电视的时候,当你打开冰箱取饮料的时候,当拨通电话与同学交谈的时候,当你登录网站查阅资料的时候,你能感觉到什么?板书课题,理解课题。简单介绍作者路甬祥及本文的写作意图。 设计依据:创设情景,导入新课,一开始就抓住了学生的注意力,激发学生的学习兴趣和情感,自然引入课文。
四、说教学方法: 依据本课的性质及小学四年级学生的身心特点,结合新课标的教学理念,本课设计以情感为纽带,通过创设情境、朗读品味、形象感知、领会重点词句,让学生在诵读中感悟延安精神,体会作者对延安神追寻的热切。随着教学过程的推进入情、动情、移情、抒情,让学生得到美的享受和情感的熏陶。 采用自主探究、小组合作的学习方法。让学生分小组探究学习,查找资料、结合史料体会情感、感情朗读、讲解汇报。充分调动学生的能动性,发挥学生的积极性,让学生在探究学习中发现问题、解决问题,读懂诗歌内容,受到精神教育。五、说教学过程:(一)揭题导入。 以激情的文字导入,简单介绍延安的革命历史,激发学生的学习兴趣。接着板书课题,让学生读题质疑。以三个问题:为什么追寻?追寻什么?怎样追寻?提挈全文,初步建立诗歌的层次。 学生交流对延安的了解,补充简介延安,让学生加深对延安革命圣地的感受。
《函数的单调性与最大(小)值}》系人教A版高中数学必修第一册第三章第二节的内容,本节包括函数的单调性的定义与判断及其证明、函数最大(小)值的求法。在初中学习函数时,借助图像的直观性研究了一些函数的增减性,这节内容是初中有关内容的深化、延伸和提高函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是前一节内容函数的概念和图像知识的延续,它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的救开结合思想将贯穿于我们整个高中数学教学。
《函数的单调性与最大(小)值》是高中数学新教材第一册第三章第2节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。学生在初中已经学习了一次函数、二次函数、反比例函数的图象,在此基础上学生对增减性有一个初步的感性认识,所以本节课是学生数学思想的一次重要提高。函数单调性是函数概念的延续和拓展,又是后续研究指数函数、对数函数等内容的基础,对进一步研究闭区间上的连续函数最大值和最小值的求法和实际应用,对解决各种数学问题有着广泛作用。课程目标1、理解增函数、减函数 的概念及函数单调性的定义;2、会根据单调定义证明函数单调性;3、理解函数的最大(小)值及其几何意义;4、学会运用函数图象理解和研究函数的性质.数学学科素养
活动准备:打击乐器:小玲、铃鼓、圆舞板若干磁带,音响,幼儿人手两根彩条 活动过程 一、教师带领幼儿随着音乐表演舞蹈《大中国》 二、学习探索用拍节奏,表现《大中国》舞曲。 1、刚才,我们小朋友舞动彩条表演《大中国》,下面,我们来学习拍手伴奏表演《大中国》音乐好吗? 2、教师反馈幼儿的想法,并将挥动彩条的1-17喝4-25小节的动作改成拍手的动作。 3、幼儿随乐练习改变的动作 4、幼儿尝试看教师指挥做拍手的节奏动作。“我来指挥,你们看我的动作,我指到哪里,哪里的小朋友就拍手。”
根据《中华人民共和国城镇国有土地使用权出让和转让暂行条例》、《 省国有土地使用权出让和转让实施办法》和国家有关规定,双方本着平等、自愿、有偿的原则,订立本合同。 第二条 甲方依据本合同出让土地的使用权,土地所有权属中华人民共和国,地下资源、埋藏物和市政公用设施均不在土地使用权出让范围。 第三条 乙方根据本合同受让的土地使用权在使用年限内,依有关规定可以转让、出租、抵押或用于其他经济活动。 乙方在受让土地使用权范围内所进行的开发、利用、经营土地的活动,应遵守中华人民共和国法律、法规及 省(自治区、直辖市)的有关规定,并不得损害社会公共利益,其合法权益受法律保护。 第四条 甲方出让给乙方的地块位于 ,面积为 平方米。其位置与四至范围如本合同附图所示。附图已经甲、乙双方签字确认。 第五条 本合同项下的土地使用权出让年限为 年,自颁发该地块的《中华人民共和国国有土地使用证》之日起算。 第六条 本合同项下的出让地块,按照批准的总体是建设 项目。(注:根据具体情况定)。 在出让期限内,如需改变本合同规定的土地用途,应当取得甲方和城市规划行政主管部门批准,依照有关规定重新签订土地使用权出让合同,调整土地使用权出让金,并办理土地使用权登记手续。 第七条 本合同附件《土地使用条件》是本合同的组成部分,与本合同具有同等法律效力。乙方同意按《土地使用条件》使用土地。 第八条 乙方同意按合同规定向甲方支付土地使用权出让金、土地使用费以及乙方向第三方转让时的土地增值费(税)。 第九条 该地块的土地使用权出让金为每平方米 元人民币(美元或港元等),总额为 元人民币(美元或港元等)。 第十条 本合同经双方签字后 日内,乙方须以现金支票或现金向甲方缴付土地使用权出让金总额的 %共计 元人民币(美元或港元等)作为履行合同的定金。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。