提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

新媒体运营简历模板

  • 【高教版】中职数学拓展模块:1.2《正弦型函数》教学设计

    【高教版】中职数学拓展模块:1.2《正弦型函数》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案

    【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教学设计

    【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40

  • 【高教版】中职数学拓展模块:3.1《排列与组合》优秀教学设计

    【高教版】中职数学拓展模块:3.1《排列与组合》优秀教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20

  • 【高教版】中职数学拓展模块:3.2《二项式定理》教学设计

    【高教版】中职数学拓展模块:3.2《二项式定理》教学设计

    一、定义:  ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.

  • 【高教版】中职数学拓展模块:3.3《离散型随机变量及其分布》教学设计

    【高教版】中职数学拓展模块:3.3《离散型随机变量及其分布》教学设计

    重点分析:本节课的重点是离散型随机变量的概率分布,难点是理解离散型随机变量的概念. 离散型随机变量 突破难点的方法: 函数的自变量 随机变量 连续型随机变量 函数可以列表 X123456p 2 4 6 8 10 12

  • 高教版中职数学基础模块下册:10.1《计数原理》教学设计

    高教版中职数学基础模块下册:10.1《计数原理》教学设计

    授课 日期 班级16高造价 课题: §10.1 计数原理 教学目的要求: 1.掌握分类计数原理与分步计数原理的概念和区别; 2.能利用两个原理分析和解决一些简单的应用问题; 3.通过对一些应用问题的分析,培养自己的归纳概括和逻辑判断能力. 教学重点、难点: 两个原理的概念与区别 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》、课件 授课执行情况及分析: 板书设计或授课提纲 §10.1 计数原理 1、加法原理 2、乘法原理 3、两个原理的区别

  • 高教版中职数学基础模块下册:10.2《概率》教学设计

    高教版中职数学基础模块下册:10.2《概率》教学设计

    课程课题随机事件和概率授课教师李丹丹学时数2授课班级 授课时间 教学地点 背景分析正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类和分步教学中给出的练习均在课本例题的基础上稍加改动过的,目的就在于帮助学生对这一知识的理解与应用 学习目标 设 定知识目标能力(技能)目标态度与情感目标1、理解随机试验、随机事件、必然事件、不可能事件等概念 2、理解基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件 1 会用随机试验、随机事件、必然事件、不可能事件等概念 2 会用基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件 3、掌握事件的基本关系与运算 了解学习本章的意义,激发学生的兴趣. 学习任务 描 述 任务一,随机试验、随机事件、必然事件、不可能事件等概念 任务二,理解基本事件空间、基本事件的概念,会用集合表示基本事件空间和事件

  • 人教版高中生物必修1生物膜的流动镶嵌模型说课稿

    人教版高中生物必修1生物膜的流动镶嵌模型说课稿

    二、流动镶嵌模型的基本内容1、膜的成分2、膜的基本支架3、膜的结构特点4、膜的功能特性设计意图:我根据板书的“规范、工整和美观”的要求,结合所教的内容,设计了如图所示的板书,使学生对本节课有一个整体的思路。八、教学反思:本节课我创设了问题情境来引导学生主动学习,利用了多媒体信息技术激发学生的学习热情,调动了学生的积极性,成功实现预期的教学目标。体现了学生为主体地位的新课程理念。启发式、探究式的教学方法以及由教师指导下的学生自主阅读、合作交流的学习方法把学生从死记知识的苦海中解救出来。初次的尝试还存在一定的缺陷,学生不能够很好的把知识和习题联系,只是把他所知道的知识简单罗列,不能够体现出能力的训练。在上课中发现学生比较腼腆或拘束,声音比较小,表达不能到位。尽管本节课存在诸多不足之处,但是也让我看到了闪光点:学生比较欢迎这样一堂自己是主角的课堂。

  • 人教A版高中数学必修一函数模型的应用教学设计(2)

    人教A版高中数学必修一函数模型的应用教学设计(2)

    本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.

  • 人教A版高中数学必修一函数模型的应用教学设计(1)

    人教A版高中数学必修一函数模型的应用教学设计(1)

    本节课选自《普通高中课程标准实验教科书数学必修1本(A版)》的第五章的4.5.3函数模型的应用。函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价,发展学生数学建模、数学直观、数学抽象、逻辑推理的核心素养。1. 能建立函数模型解决实际问题.2.了解拟合函数模型并解决实际问题.3.通过本节内容的学习,使学生认识函数模型的作用,提高学生数学建模,数据分析的能力. a.数学抽象:由实际问题建立函数模型;b.逻辑推理:选择合适的函数模型;c.数学运算:运用函数模型解决实际问题;

  • 人教版高中数学选修3一元线性回归模型及其应用教学设计

    人教版高中数学选修3一元线性回归模型及其应用教学设计

    1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).

  • 学校体育工作调研报告

    学校体育工作调研报告

    1、专业教师短缺。从调查情况看,有近40%的学校专业教师短缺,10%的学校无专业体育教师,现有体育教师中具有本科学历(不包括自考、函授毕业生)的仅占37%。  2、体育教师年龄结构、学历结构不合理。调查显示,有73%的农村学校体育教师队伍年龄结构不合理,无法形成梯队建设,有38%学校的体育教师学历结构不合理,不能适应国家教育部对学校教师学历要求。年龄结构和学历结构的不合理势必影响学校体育工作持续、稳定开展。  3、师资培训意识淡薄。通过调查,大部分学校都未能制定详细的师资培训计划,也未能认真组织体育教师开展各种各样形式的培训活动,致使大部分体育教师的知识、技能及思想意识停留在一个较低水平。这是造成农村学校体育教师思想观念落后,创新意识不强,难以适应素质教育改革的重要因素之一。

  • 2023年体育教学工作计划

    2023年体育教学工作计划

    1、走:第一周:向指定方向走,拖(持)物走;第二周:在指定范围内散走;第三周:一个跟着一个走,延圆圈走,模仿动物走;2、跑:第四周:向指定方向跑、持物跑;第五周:延规定线路跑;第六周:在指定范围内散跑;第七周:在指定范围内追逐跑;第八周:听口令走跑交替;3、跳:第九周:双脚向前跳;第十周:双脚向上跳(头触物离头10—12cm);第十一周:从20—25cm高处往下跳;第十二周:避开中间直线(左右)跳;

  • 艺体工作计划范文精选

    艺体工作计划范文精选

    1、体育  以《小学生体育纲要》为指导思想,认真贯彻实施《国家体育锻炼标准》,积极开展课外体育活动,让学生掌握体育基础知识的技能和技巧。教会学生锻炼身体的方法,培养一批有知识,又有强壮体魄的新时代的接班人。  2、美术  以大纲为准绳,认真贯彻素质教育精神,积极优化美术课堂教学,提高课堂效率,让学生在掌握基本绘画技能的同时,激发学生们的民族自尊心和自信心,启发学生们大胆动手和动脑的想象、创造能力。培养有一定审美水准和造型能力的一代新人。

  • 学生会体育部工作计划

    学生会体育部工作计划

    1、 部门建设  严格执行考评制度,定期召开体育部内部会议,进一步明确体育部的工作职能,工作目标,工作安排及工作重点,从而大家更好的开展工作,使大家积极的投入到体育部的工作中来。及时总结前期工作,分析工作好的方面,差的方面,教训,我们吸取;不足,我们改进,同时分配下一阶段的工作,加强各成员间的沟通,进一步提高他们的处事能力与工作能力;进行内部的结构优化,体育部人员实行分组制,增强人员机动性。  2、 早操检查工作  新的学期我们将配合好学生工作处老师做好各学院的早操检查工作,并认真督促各学院提高早操质量。

  • 个体口腔诊所规章制度

    个体口腔诊所规章制度

    3、 医生在检查、治疗的过程中必须戴口罩和手套,检查的动作要轻柔,口镜避免压迫牙附着龈区引起患者不适。  4、 治疗前应向患者提出二至三种治疗方案,并耐心介绍各种方案治疗的时间、次数、优缺点及大致的价格,在征得患者同意后再开始治疗,阻生齿拔出、小手术需要签同意书。

  • 见习护士心得体会

    见习护士心得体会

    手术室一个让人听了感觉很恐怖又很神秘的名词,手术室的一道门将里外分割成两个世界.让它披上了一层神秘的面纱.所有科室中手术室是另我最向往的科室,因为手术室对我来说很神秘,我带着好奇心来到手术室实习. 在手术室一个月的实习生活中感觉自己收获很多,增长了很多见识包括护理知识上,也包括人际关系方面. 手术室护士分器械护士和巡回护士.器械护士负责术前准备工作,给医生传递工具,术后打包.巡回护士负责接送病号等.

  • 参加社团心得体会

    参加社团心得体会

    大一时,一直积极参加社团活动,曾担任读协的办公室干事,做事认真有责任,努力完成社团交给我的任务,在丰富了学习交流之余,更大的收获是结识了许多朋友和积累很多宝贵的工作经验,至第一学年结束时,被评为读书协会“社团活动积极分子”。 至大二,本人担任了读协的办公室主任,主要从事负责传达社团内各个部门及会员信息安排回忆,活动,收发会员资料等工作,学期初始,为迎接新生,忙于招社团新员,整理新会员资料,选出社团新一届干事,以前自己还是的时候,就只是努力完成了社团交给我的任务就好了,而现在所有的困难都摆在了面前,感到任务的繁杂,但累并快乐着。

  • 个体诊所规章制度三篇

    个体诊所规章制度三篇

    2.严格遵守医疗护理各项技术操作规程,防止医疗事故发生。  3.将本机构《医疗机构执业许可证》正本悬挂于醒目位置,执业地点、执业范围、负责人等登记项目发生变化,提前申请变更。  4.按照核准的诊疗项目执业,完成卫生行政部门指令性工作任务,主动参与突发公共卫生事件医疗救治工作。

上一页123...93949596979899100101102103104下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。