活动目标: 1、引导幼儿在愉快的游戏中尝试手脚着地向前爬以及正、侧面钻的动作,发展幼儿动作的柔韧性,提高身体的协调性。 2、培养幼儿合作游戏的能力。 3、初步培养幼儿的创造性。活动准备: 体操垫3块、“小桌子”5张(拼搭成魔幻区的山洞)“金箍棒”25根、25个幼儿自制的猴子面具、“猴哥”和“白龙马”的音乐磁带、玩具白龙马1只、 塑料圈3只活动过程:一、场境的布置今天,我们来做个“小猴”救“白龙马”游戏。这个游戏主要是“猴王”听说师傅的“白龙马”被妖怪抓起来藏在一个秘密的地方,昨天“猴王”已经侦察到“白龙马”被妖怪关在“宫殿”里。去“宫殿”要经过的地方,我己经画出来了。展示示意图: 下面请“小孩们”动脑筋,根据场境的示意图把这个场境布置出来。 自评:教师大胆地放手,让幼儿边看图示、边讨论、边操作,小组之间也显得非常团结合作。幼儿用自己感兴趣的方式来完成场境布置,充分体现了幼儿的自主性、参与性和合作性。例如A:男孩们看到图示都主动分成小组抬桌子,把桌子拼成山洞。女孩们都抬垫子、搭塑料圈。例如B:“金箍棒”25根,孩子们自行拼成小路,有的幼儿不同意拼成小路,这就产生“矛盾”。但有的幼儿说:“图上的天然山洞要我们一起拼搭,还要把金箍棒举起来呢”。二、小猴练功 活动伊始,教师扮演“猴王”幼儿扮演“小猴”,音乐响起“猴王”从自己身上拔起一根毫毛放在嘴边一吹,紧接着大喊一声:“孩儿们_____起____床了”,“小猴”齐声说:“是”。 “猴王”和“小猴”同时双手放在自己的额头旁,做观察事物的动作。 师、幼根据猴哥的音乐磁带,一起模仿孙悟空的动作练习基本功。为了能顺利地救出“白龙马”,我们必须了解“地形”,熟悉“地形”下要孩儿们开始操练吧。幼儿根据自己的需要,反复在场地上大胆尝试手脚着地向前爬行以及正、侧面钻的动作等。在练习过程中,教师不断鼓励幼儿动脑筋、想办法克服困难。自评:集中幼儿的注意力,激起大脑皮层的兴奋,通过基本功练习使身体各器官快速进入状态,同时故事引入的方式,激发幼儿主动参加体育锻炼的兴趣。幼儿在尝试中表现大胆、积极和主动,通过自己喜欢的方式进行动作练习,想象力丰富,有些幼儿还有所创造。但也存在少部分幼儿过度兴奋的现象。 例如:“小猴”在模仿孙悟空地上打滚的动作时,显得特别“神龙活现”。
2、培养幼儿动作灵敏性,提高他们的安全意识。游戏准备:小水桶两个、小毛巾人手一块、垫子连两张、“浓烟圈”四个、“火 柱”六根、电话机两台、报警器、场地布置如图: 游戏玩法:幼儿分成两组,每人拿一小毛巾站好游戏开始,火灾警报响起,小朋友齐念儿歌: 楼房里、起大火, 火焰熊熊烟雾多。 小朋友、别慌张,
一般情况下它总是保持清洁新鲜状态。但是当空气中某些成分的含量超过了正常含量,或者空气中进入了正常情况下不存在的成分或有毒有害物质,从而影响人的健康和生物的生长发育,或对各种物体以及对天气和气候产生不良影响时,这样的空气状态称为空气污染。1、当空气受到污染时会是怎样呢?下面我们做一个实验。点燃蜡烛,把一张白纸放于火焰上方(不能点燃纸),过一段时间看纸有什么变化?和另外一张纸对比你发现了什么?请同学们仔细观察下面几幅图片,认真思考这是我们生活中的什么现象?他们污染了空气吗?小结:大气污染源就是大气污染物的来源,主要有以下三个:小结:大气污染源就是大气污染物的来源,主要有以下三个:(1)工业污染:工业是大气污染的一个重要来源。工厂排放到大气中的污染物种类繁多,性质复杂,有烟尘、硫的氧化物、氮的氧化物、有机化合物、卤化物、碳化合物等。
7、几乎不做家务,力所能及的事情都要父母代办。8、有时候,你的父母气极了,会骂你“给我滚,滚得远远的!”之类的话。以上问题说明,你表现得越小孩子气,你的父母就越把你“拴牢”,这种关系就越难平等。就像我给予你们充分的信任和自由,但是如果你们的表现让我觉得达不到我的期望和要求时,我也会成为专制的“暴君”、“严师”,就会影响到我们之间原本平等融洽的关系。二、朗读诗 小时候,你是父母的尾巴,你需要父母,需要保护;如今你长大成了少年,你成了父母手里的风筝,你渴望独立,渴望自由,却不能挣脱父母的“拉线”。可你是否想过,如果你真的成了断线的风筝,你将飞向何方?其实,你是父母特别的客人,两代人即使不能相互理解,也可以相互接纳。你不必像风筝一样抗争,你可以和父母友善地“分离”,而不被父母过分的保护“拴牢”。走向成熟就是独立得更彻底,而又联系得更紧密。
6.回想幸福闭目放松,仔细回想:(1)父母养育、关爱自己的一些难忘的事。(2)父母工作、做家务的辛苦与劳累。(3)和父母在一起的难忘的快乐时光。(同学们展示准备好的与爸爸或妈妈在一起的照片。)从内心深处表达对他们的感激:(1)感谢他们的养育之恩。(2)表达努力学习的决心,尽力让他们放心。(3)决定做一件令他们开心满意的事情。7.手语表演:“感恩的心”(全班起立齐唱。)在背景音乐“感恩的心”中,同学们在“感恩父母、珍爱生命”的横幅上郑重签名,以表自己的决心。(四)活动小结:1. 主持人作小结,倡导同学们为了自己,为了身边爱自己的人珍惜生命,主动去了解父母,积极与父母沟通,正确处理与父母之间的矛盾。2. 主持人宣布活动圆满结束。
三.活动过程: 引言:达.芬奇曾经说过:劳动一日可得一天的安眠,劳动一世可得幸福的长眠。 的确,只有亲自参加劳动的人,才能尊重劳动人民,才会懂得珍惜别人的劳动成果,才会懂得幸福的生活要靠劳动来创造。劳动是我们中华民族的传统美德。我们二十一世纪的中学生就更应该热爱公益劳动,珍惜劳动成果。那么,我们应该怎样热爱公益劳动,珍惜劳动成果呢?“五一”是国际劳动节,那让我们为这个全世界劳动人民的节日唱出劳动的赞歌吧。
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用
因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
A、B两码头相距140km,一艘轮船在其间航行,顺水航行用了7h,逆水航行用了10h,求这艘轮船在静水中的速度和水流速度.解析:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h,列表如下,路程 速度 时间顺流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:设这艘轮船在静水中的速度为xkm/h,水流速度为ykm/h.由题意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:这艘轮船在静水中的速度为17km/h,水流速度为3km/h.方法总结:本题关键是找到各速度之间的关系,顺速=静速+水速,逆速=静速-水速;再结合公式“路程=速度×时间”列方程组.三、板书设计“里程碑上的数”问题数字问题行程问题数学思想方法是数学学习的灵魂.教学中注意关注蕴含其中的数学思想方法(如化归方法),介绍化归思想及其运用,既可提高学生的学习兴趣,开阔视野,同时也提高学生对数学思想的认识,提升解题能力.
答:书包单价92元,随身听单价360元。最优化决策:聪明的Mike想了想回答正确后便同爸爸去买礼物,恰好赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?提示:书包单价92元,随身听单价360元。2)在人民商场购买随声听与书包各一样需花费现金452× =361.6(元)∵ 361.6<400 ∴可以选择在人民商场购买。在家乐福可先花现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元)。因为362<400,所以也可以选择在家乐福购买。因为362>361.6,所以在人民商场购买更省钱。第五环节:学习反思;(5分钟,学生思考回答,不足的地方教师补充和强调。)
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。