方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1、找一找生活中的物体表面上的角,教师给出一定的描述语句『如:红领巾是由2个(锐角)和1个(钝角)组成的。课后,我校语文老师告诉我这句话是错误的,应该该成“红领巾的表面有2个锐角和1个钝角”。作为数学教师在课堂语言上更要严格要求自己,把握数学的严谨性,以免误人子弟。』,让学生学会用简洁的语言表达数学知识,逐渐培养学生的语言表达能力。把学生的思维从课堂带到了生活中,使学生感受到生活中的数学无处不在。『学生朱洋成在教室墙壁上找到一个角,但是用眼睛判断不出是锐角还是钝角,一时楞在那里不知所措。于是我引导他判断角的大小的方法,他说出来后,将教学用的三角板交给他,让他自己动手去寻找答案。』我认为当学生遇到困难,不能说出很多生活中各类角时,教师不立即给予回答,而让学生思考、说说解决的办法,使其懂得要走进生活去观察、去发现、去解决。这样的练习设计,让学生学有困难,学有疑问,学有思考,培养学生学习数学的兴趣。
(2)由题意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,该产品的质量档次为第6档.方法总结:解决此类问题的关键是要吃透题意,确定变量,建立函数模型.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计二次函数1.二次函数的概念2.从实际问题中抽象出二次函数解析式二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型.许多实际问题往往可以归结为二次函数加以研究.本节课是学习二次函数的第一节课,通过实例引入二次函数的概念,并学习求一些简单的实际问题中二次函数的解析式.在教学中要重视二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述、研究变量之间变化规律的意义.
4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x) (100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0 <x <10=化为:y=-2x2+20x (0<x<10)…(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D (0≤x≤2)…(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个? (各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点? (都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数, a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.
. 一个数的倒数等于它本身的数是()A.1 B. C.±1 D.04. 下列判断错误的是()A.任何数的绝对值一定是非负数; B.一个负数的绝对值一定是正数;C.一个正数的绝对值一定是正数; D.一个数不是正数就是负数;5. 有理数a、b、c在数轴上的位置如图所示则下列结论正确的是()A.a>b>0>c B.b>0>a>cC.b<a<0< D.a<b<c<06.两个有理数的和是正数,积是负数,则这两个有理数( )A.都是正数; B.都是负数; C.一正一负,且正数的绝对值较大; D.一正一负,且负数的绝对值较大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整数的和是()A.-1999 B.-1998 C.1999 D.20009. 当n为正整数时, 的值是()
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
【目标导航】1.探究“和”,了解“和”的具体含义及其在当下的积极意义;2.交流“和”,比较全面地了解孔子“和而不同”的思想和主张,理解古今“和”的多样性思想内涵;3.运用“和”,搜集生活中“和为贵”的典型事例,感悟剖析并从中汲取营养。【课时安排】1课时自由组成小组,搜集相关资料,通过多种手段如多媒体,学生绘画,音乐等课程资源,为学生创设优美的教学情境。【新课导入】中国文化崇尚“和”,有关“和”的思想源远流长、丰富多彩。“和”既被视为诞育万物的本源,也被看做修德养性的关键,还被认为是社会交往的准绳,更被尊奉为国家共处的原则。本次综合性学习以“和”为主题,同学们可以相互探讨一下“和”在你们生活中起到了什么作用。
3. 实验(课件演示)每个人每天要喝1400毫升水,也就是1.4升,让同学们猜出猜看能有几杯水,通过实验告诉学生每天至少要喝多少杯水。(课件演示)阅读材料,对学生进行节约用水的思想教育。4. 教师:我们知道了容积和容积单位,也知道了它们与体积单位的关系,现在让我们试一试怎样计算一个容器的容积.出示例5、一种小汽车上的油箱,里面长5dm,宽4dm,高2dm。这个油箱可以装汽油多少升?请一位同学读题.教师:这道题告诉了我们油箱里面的长、宽、高,我们能不能计算出它的容积?(可以.)但是,我们能不能直接算出它的容积是多少升?(不能.)那么应该怎样做?(先算出体积,再把算出的体积单位的名数改写成容积单位的名数.)教师让学生独立做题,教师行间巡视,做完后一步一步地指名让学生说一说是怎么做的,集体订正。
5、 你能结合刚才的活动说一说你的感受吗?6、 看来物体所占空间还有大小之分,那你能判断出手机、收音机哪个物体所占的空间大?哪个物体所占的空间小吗?7、 象石块、手机、书包等这些都是它们的体积,谁能根据你的理解说一说什么是物体的体积?[小学生的思维以形象思维为主,随着年龄的增长逐步向抽象思维过渡。根据这一特点,我在学生感知“空间”的基础上,通过三次摸一摸的活动,引导学生进行操作、观察,思考,使操作、观察与思维、语言表达紧密结合起来,然后再逐步摆脱直观形象,利用表象逐步抽象形成概念,由感性认识上升到理性认识。](三) 尝试、解决问题在新一轮课改中,《标准》所提倡的数学课堂教学应“由单纯的传授知识的殿堂转变为学生主动从事数学活动的场所;学生从单纯的知识接受者转变为数学学习的主人。”
【说教材分析】本节课的教学内容是千以内数的大小比较,教材把比较数的大小分为两种情况:位数相同的数比较大小,位数不同的数比较大小。是在学生掌握了百以内数的大小比较方法,能认读千以内数,理解数的组成的基础上开展教学的。而且在实际生活中,学生积累了大量感性经验,学生已经能初步感知、判断出数的大小。本节课的重点首先应达成知识技能目标,学生自主探究出千以内数的大小比较方法,能正确、快速比较出千以内数的大小,在大量的、多种形式的练习中培养学生的数感。教材没有将比较数的大小的方法归纳概括出来,是放手让学生自主观察、比较、分析、概括,合作商量,在学生充分表达、交流自己的想法的过程中,让学生自己发现、总结出数的大小比较方法。其次,在实际应用中让学生体会到生活中对数的应用的广泛性、实用性,从而强化所学知识,获得积极的情感体验。
二、说教法在本课的教学中我力求改变过去重知识、轻能力,重结果、轻过程,重教法、轻学法的状况。树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想。本课的教学方法有创设情境法、引导探究法、类比迁移法、归纳总结法、组织练习法等。三、说学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而我们要特别重视学生学习方法的培养和指导。本课学生的学习方法主要有:自主发现法、合作探究法、类比迁移法、归纳总结法、感知体验法等。四、说教学程序课标指出教学应遵循学生学习数学的心理规律,强调从学生已有生活经验出发,将数学活动置身于实施的生活背景之中,为他们提供观察操作、实现的机会。根据本节课的教学内容我设置了如下四大环节:(一)复习旧知、引入新课。
我说课的内容是小学数学二年级下册《1000以内数的认识》,本节课的教学时建立在学生学习过百以内数的认识基础之上的,是学生对100以内数的认识的延伸和扩展,同时,它有着一个非常重要的地位,就是要为学习10000以内数的认识做好铺垫,因为,1000或10000都是比较大的数,在学生的认识还很有限的基础上,如何让学生能尽快的建立起大数的概念和意识,在这里格外重要,对于这一部分内容,《小学数学课程标准》中是这样阐述的:能认、读、写万以内的数,会用数表示物体的个数或事物的顺序和位置,能说出各数位的名称,识别各数位的数字的意义;结合现实素材感受大数的意义,并能进行结算。根据这一阐述,我把本课时的教学目标定义以下几点:1、学习1000以内的数,体验数的产生和作用。2、会数1000以内的数,认识计数单位“千”,体会十进关系。3、让学生经历观察、猜想、操作等数学活动过程,结合现实材料感受大数的意义,逐渐发展学生的数感。
学生在一年级上册开始学习简单的分类整理,初步认识了象形统计图和简单的统计表。本课继续学习统计,以整理随机出现的简单数据为主要内容,并把经过整理的数据填进简单的统计表。在统计过程中,让学生学到一些比较容易的统计方法,渗透统计的思想和方法,激发培养学生的学习热情和信心。三、教学目标:1、使学生体验数据的收集、整理、描述和分析的过程,了解统计的意义,会用简单的方法收集和表现数据。2、认识条形统计图,明确用1格表示5个单位的表现形式,能根据统计图提出问题,并初步进行简单的预测。3、在学习过程中培养学生的实践能力与合作意识。四、重点难点教学重点:使学生认识条形统计图,明确可以用一格表示5个单位。教学难点:引导学生通过合作讨论找到切实可行的解决问题的方法。
3、教材结构分析教材内容可以看出,本节课包含四个知识的内容。即调查入学时的体重情况填写统计表;收集现在(二年级)的体重情况填写统计表;把入学以及现在的体重情况统一填写到同一个统计表中;整理、分析表内信息回答简单的问题。但从本地学生情况实际出发,以及条件的限制,所以本人对教材内容进行了略微的调整,将调查入学时的体重情况填写统计表改为统计本地区天气情况,也与现实生活紧密地联系在一起。同时,按照教材的逻辑性将知识整合在新课程改革的目标中。4、教学目标(1)知识目标:能运用信息的手段、新的学习方法收集整理数据完成简单的复合式统计图。(2)情感目标:能根据统计图表中的数据提出并解答简单的问题,感受生活中处处有数学,结合实例有机地进行家乡情的教育。
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?
解:(1)设第一次落地时,抛物线的表达式为y=a(x-6)2+4,由已知:当x=0时,y=1,即1=36a+4,所以a=-112.所以函数表达式为y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,则-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守门员约13米;(3)如图,第二次足球弹出后的距离为CD,根据题意:CD=EF(即相当于将抛物线AEMFC向下平移了2个单位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法总结:解决此类问题的关键是先进行数学建模,将实际问题中的条件转化为数学问题中的条件.常有两个步骤:(1)根据题意得出二次函数的关系式,将实际问题转化为纯数学问题;(2)应用有关函数的性质作答.
解决了以上三个问题以后,我再让学生先独立将四座山的高度按照从小到大的顺序排列出来,这时,我会适当地引导学生阅读前面三个问题的解决过程,并梳理进行多位数比较的思路:先按数位比,再从高位看起。(三)分层次练习,巩固新知识在学生掌握了上述比较大数的方法以后,我将让学生运用所学的新知识,去解决”练一练”中的第1,2,5题。其中第1,2题是为了巩固“万以内的数的比较方法”,“能用符号表示万以内数的大小”这两个知识点;而第五题则是为了鼓励学生在新的情景中,进行数的大小比较。(四)课程总结这节课,同学们收获了什么?学生一定会很轻易地将上面四座山进行比较的规律说出来的。这时,我会引导学生回顾全文第四,板书设计(略)本节课,我将用最简单的文字体现重难点,便于学生理解。我的说课到此结束,谢谢大家!
(1)课件显示搭正方形的画面以及问题“4根小棒搭一个正方形,13根小棒可以搭多少个正方形,还剩几根?”。(2)组织小组讨论:有13根小棒,能搭几个正方形?请每个同学利用学具摆一摆,再依据上节课学习的除法算式,小组内讨论用竖式怎样表示。【设计意图:通过摆小棒搭正方形和自主探究等开发学生思维,促进学生多层次思考,培养孩子良好的思维方式,推动学生积极思考,逐步开阔学生解决问题的思路,培养学生横向思维能力。】(3)进行全班交流。指名回答;引导学生探究竖式各数表示的意思及单位名称的写法,并进一步认识余数。课件显示搭小棒的过程及横式和竖式:13÷4=3(个)……1(根)答:可以搭3个正方形,还剩1根。引导学生认识竖式中:“13”表示把13根小棒拿去分,“4”表示摆一个正方形需要4根小棒,“3”表示可以摆3个正方形(强调单位“个”),“12”表示3个正方形共12根(4×3=12)。“1”表示摆了3个后还剩下1根(强调单位:“根”),说明“1”是这个竖式的余数,这1根不能再继续往下分了。
二、说教学目标:1、探索有余数除法的试商方法,让学生再探索、练习中积累有余数除法的试商经验。2、运用有余数除法的有关知识,联系生活实际解决简单的问题,体验成功的喜悦。三、说教学重难点:1、让学生经历试商的过程,积累试商的经验,逐步达到熟练程度。2、使学生理解和掌握有余数除法的试商方法。体会余数要比除数小。四、说教学方法:探究、自主合作交流。五、说教具:课件、六、说教学过程:由于二年级学生,他们活泼好动,争强好胜,想象丰富,求知欲旺盛;学习责任感不断增强,但学习往往从兴趣出发;他们注意力不稳定、不持久,无意注意占主导地位,缺乏独立思考能力,容易受外界事物的干扰。因此,教学中培养学生参与数学活动的兴趣,培养良好的学习习惯,帮助他们逐步树立自信、自尊、自律等积极心态,是他们通过思考,提高自我认知能力,自我控制能力,这是提高课堂教学效益的基础,也是教师需努力和强化之处。下面我将详细说说我的教学过程: