1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
用米作单位,用分数怎么表示呢?(1/10米)师:1/10米也可以写成0.1米。师:请同学们看米尺,从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?可先和同桌商量商量。学生同桌讨论后反馈师根据反馈结果提问:请同学观察一下1/10米和0.1米,3/10米和0.3米,7/10米和0.7米之间有什么关系?随学生的回答出示1/10米=0.1米 3/10米=0.3米 7/10米=0.7米。再让学生观察上面的等式,四人小组讨论你发现了什么?使学生通过讨论明确:分母是10的分数可以写成一位小数,一位小数表示十分之几。2、 认识两位小数 、三位小数师:我们已经知道了一位小数表示十分之几,那么请同学猜一猜两位小数与什么样的分数有关?三位小数与什么样的分数有关?(具体的步骤和前面相似)让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关?有意识地促进“迁移”,使学生在学会的同时学习能力也得到提高。关于计数单位的教学我个人认为还是放到52页小数数位顺序表这里教学比较妥当。
(一)观图激趣、设疑导入 师:上一节我们已经认识了比例,知道两个比怎样才能组成比例,下面请同学们判断一下下面各组的比能否组成比例。(1)0.4∶和1.2∶2 (2)和生1:根据比例的意义,第(1)题,这两个比的比值相等,都是0.6,所以(1)题的两个比能组成比例。生2:我来回答第(2)题,我也利用比例的意义,求出=5,=6,这两个比的比值不相等,所以第(2)题的两个比不能组成比例。师:这两名同学回答的真好,有理有据,让我们为他们的表现鼓掌!师:今天这节课,我们将共同来学习用另一种方法来判断两个比能否组成比例,同学们想知道是什么方法吗?生:想知道。师:那就是比例的基本性质(板书课题:比例的基本性质)。【设计意图】复习学生已有的知识,唤醒学生已有学习经验,教师的提问吸引了学生的注意力,也引发学生的好奇心,为学习新知识开了一个好头。
教师随着学生的回答用卡片拉出0.6000000…00[约有1.5米长],问:大小变了吗?[学生非常惊奇和振奋地说:没变!]如果它末尾的0像北京奥运圣火那样穿越五洲四海,它的大小变吗?[学生异口同声:不变!]也就是说与0.600大小相等的小数有多少个?师:在这无数个小数中,最简单的是哪一个?师:当我们遇到小数末尾有零,可以去掉末尾的零,写起来更简便,这就叫做小数的化简。(板书化简)说说是根据什么进行化简的?师:你能把0.40 1.850 2.900 0.080 12.000化简吗?请大家打开数学书59页做一做第一题,写在数学书上。【0.080】师:这个0为什么不去掉,去掉会怎么样?【12.000】师:运用小数的性质,我们可以把三位小数化简成整数。师:那你觉得在运用小数的性质化简小数的时候,应该注意什么?
1.说教材《比例的意义和基本性质》是人教版小学数学六年级下册第四单元的内容,这部分内容是在学习了比的有关知识并掌握了一些常见的数量关系的基础上进行教学的,是前面“比的知识”的深化,也是后面学习解比例知识的基础,并为学习比例的应用,特别是为正、反比例及其应用打好基础。比例的知识在生活和生产中有着广泛的应用,所以本节课的知识就显得尤为重要。2.教学目标我以《新课程标准》为依据,结合小学数学教材编排的意图和学生的实际情况,拟定以下教学目标:(1)知识与技能目标:使学生理解并掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。(2)能力目标:培养学生自主参与的意识和主动探究的精神,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。 (3)情感与态度目标:在教学中渗透爱国主义教育,培养学生善于观察、勤于思考、乐于探究的学习习惯。3.教学重点、难点教学重点:理解比例的意义与探究基本性质。教学难点:运用比例的意义或性质判断两个比能否组成比例,并能正确地组成比例。
6. 本题是一道实际应用的题,可以结合生活实际举例,在举例中进一步认识分数。7. (读作八分之一)表示把人的身高看作单位“1”,头部的高度占整个身高的 ; (读作五分之三)表示把整个长江的干流看作单位“1”,受污染的部分占整个长江干流的 ; (读作十分之三)表示把死海表层的水看作单位“1”,含盐量占死海表层水的 。8. 读作六分之一, 读作七分之二, 读作是十五分之四, 读作十八分之十一, 读作一百分之七。它们的分数单位分别是: 、 、 、 、 。9. 本题有两个知识点:一是根据分数的意义涂色,是把12个苹果平均分成了2份,1份有6个苹果; 是把12个苹果平均分成了3份,1份有4个苹果; 是把12个苹果平均分成了4份,1份有3个苹果; 是把12个苹果平均分成了6份,1份有2个苹果; 是把12个苹果平均分成了12份,1份有1个苹果。二是在涂色中感受平均分成的份数越多,每一份越少,也可以说随着分母的增大,几分之一所表示的苹果个数,从 的6个到 的1个,相应地在减少。
写作背景这首诗写于普希金被沙皇流放的日子里,是以赠诗的形式写在他的邻居奥希泊娃的女儿叶甫勃拉克西亚·尼古拉耶夫娜·伏里夫纪念册上的。那里俄国革命正如火如荼,诗人却被迫与世隔绝。在这样的处境下,诗人却没有丧失希望与斗志,他热爱生活,执着地追求理想,相信光明必来,正义必胜。(三)、问题探究1、“假如生活欺骗了你”指的是什么?指在生活中因遭遇艰难困苦甚至不幸而身处逆境。作者写这首诗时正被流放,是自己真实生活的写照。2、诗人在诗中阐明了怎样的人生态度?请结合你感受最深的诗句说说你曾有过的体验。诗中阐明了这样一种积极乐观的人生态度:当生活欺骗了你时,不要悲伤,不要心急;在苦恼的时候要善于忍耐,一切都会过去,我们一定要永葆积极乐观的心态;生活中不可能没有痛苦与悲伤,欢乐不会永远被忧伤所掩盖,快乐的日子终会到来。
2重点难点教学重点用各种方法、材料制作未来的学校模型。第一课时:设计制作学校的平面图第二课时:设计制作学校的立体模型。教学难点大胆想象,小组协作,创想出与众不同的学校创意。第一课时:学校建筑的布局。第二课时:设计与众不同的未来的建筑。3教学过程3.1 第一学时
三、说学法有效的数学学习活动不是单纯地依赖模仿与记忆,而是一个有目的的、主动建构知识的过程。为此,我十分重视学生学习方法的指导,在本节课中,我指导学生学习的方法为:观察发现法、动手操作法、自主探究法、合作交流法,让他们在说一说、摆一摆、填一填、做一做、想一想等一系列活动中探索长方体体积的计算方法。我力求以"长方体、正方体体积"这一数学知识为载体,通过学生主动参与、自主探究、发现结论的过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上。四、说教学流程教学时.我安排了情景引入.揭示课题,自主探究.推导公式,利用关系.类推公式,巩固练习.运用公式,全课总结.交流评价五个环节.(一)激情引趣.揭示课题.首先,通过比较生活中一些物体的大小,复习体积概念。
5、交流。学生可能有按照长方体的表面积的计算方法计算的。交流时注意引导学生比较哪种方法最简便,同时明确在正方体表面积的计算公式中为什么要乘6。7、质疑问难。8、揭示表面积的含义:刚才我们在求做长方体和正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体和正方体6个面积的总面积,叫做它的表面积。(三)巩固练习,扩展应用。(10分)数学来源于生活,又服务于生活,学生学到的知识通过应用才能真正理解和掌握。1、书中的习题。15页练一练、17页1、5题。通过有目的的基本练习、巩固练习、综合练习,使学生进一步加深了对新知识的理解。强化了学生运用新知解决实际问题的能力,使学生形成了一定技能技巧。
一、教材分析长方体和正方体的表面积是人教版教材五年级下册第三单元第二章节的内容。本节课的地位和作用:这部分内容是在学生学习了长方体和正方体的认识以及掌握了长方形和正方形面积的计算方法的基础上进行教学。教材中各年级涉及到的内容如下:长方体和正方体的表面积这部分内容,是在学生认识并掌握了长方体和正方体特征的基础上教学的。教材为了使学生更好地建立表面积的概念,加强了动手操作,让每个学生拿一个长方体或正方体纸盒,沿着棱剪开,再展开,观察展开后的形状。并分别用“上”“下”“前”“后”“左”“右”标明6个面。这样,可以使学生把展开后每个面与展开前这个面的位置联系起来,更清楚地看出长方体相对的面的面积相等,以及每个面的长和宽与长方体的长、宽、高之间的关系,既让学生明确了表面积的含义,又为下面学习计算长方体和正方体的表面积做好了准备。
3.说教学重、难点依据数学课程标准,及对教材的认识,我确定了本节课的重点和难点。教学重点:掌握长方体和正方体的特征。教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。二、说教法根据几何知识的教学特点、本节教学内容以及小学生空间观念薄弱的特点,我将采用以下教学方法。直观演示法:利用图片等手段进行直观演示,激发学生的学习兴趣;观察发现法:通过让学生观察长方体、正方体的一些实物发现新知,培养学生的观察概括能力;合作探究法:引导学生通过自主研究、合作讨论等活动形式来获取知识。同时运用多媒体辅助教学,使学生的观察能力、抽象概括能力逐步提高。三、说学法为了使学生较好地掌握长方体和正方体的特征,并逐步形成空间观念,除了让学生通过观察来认识长方体和正方体的特征以外,在观察实物的基础上,通过动手操作,看一看,摸一摸,数一数,量一量,做一做来学习新知,同时以此来激发学生的学习兴趣,调动学生的积极性。
本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。教学目标1、结合具体自作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。 2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。 3、培养学生数学的应用意识。 重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。 难点:理解体积公式的意义。
五、说教学过程为了高效地实现教学目标,整个教学过程分为如下几个环节进行:环节一:创设情景,导入新课在新课开始时,用多媒体课件以PPT的形式展示几幅含有长方体和正方体的图片。即建筑物,道路和家具。让学生通过观察图片找出其中的长方体。然后,让学生联系到生活中的物体,找出2到3个长方体的实物。并在这些实物的基础上呈现长方体的几何图形。也由此导入新课——长方体的认识,板书课题,长方体的认识。环节二:合作学习,探究新知。在这个环节中,我设计了这样几个活动,来落实教学目标。活动一,“数一数”。把学生分成几个小组,让他们观察手中的长方体纸盒,请他们找出长方体有几个面,再找出面与面之间的线,由此导入棱的概念,通过观察,他们发现每三条棱相交于一点。由此导入顶点的概念,再找出有几个顶点。并在设计的表格中板书。
1.估计一下教室地面的大小,并说说你是怎样估计的?如果知道教室的长为8米,宽为6米,请问它的面积是多少?如果要在教室的天花板一周围上装饰线条,需要多少米线条?2.小刚房间的一面墙壁长6米,宽3米,墙上有一扇窗面积是3平方米,现在要粉刷这面墙壁,要粉刷的面积是多少?3.一辆洒水车每分行驶60米,洒水的宽度是8米,洒水车直行9分,被洒水的地面是多少平方米?4.一张长方形的纸,长9厘米,宽4厘米,剪下一个最大的正方形后,剩下纸片的面积是多少平方厘米?5.小明用36厘米长的铁丝围成一个正方形,这个正方形的面积是多少平方厘米?6.有两个大小一样的长方形,长18厘米,宽9厘米,拼成一个正方形,它的周长是多少?拼成一个长方形,它的周长是多少?拼成的两个图形面积有什么关系?是多少?
活动三:认识正方体的特征,总结长方体、正方体的关系(1)学生用类比法学习正方体的特征,并揭示出长方体和正方体的内在联系,得出:正方体是特殊的长方体。(2)说说生活中哪些物体是长方体、正方体? 开放的学习方式,以学生的自主学习为中心,让学生通过自身的发展尝试总结,验证,实现知识的“再创造”。比较是认识事物的主要方法之一,特别在几何体教学中,运用比较方法,加强形体间的联系和区别,提高识别能力。同时渗透事物普遍联系和发展变化的辩证唯物主义观。联系生活,体现数学来源于生活,又应用于生活的特点。活动四:学以致用智慧屋,包含判断题、计算题等多种题型的练习,培养学生展开多向思维,是学生能够从不同角度解决问题的基础。这样的练习题,侧重于知识点的落实,巩固新知。