教学要求1. 通过生活中的事例,学会解决“找次品”这类问题的思想方法。2. 体会解决问题策略的多样性及运用优化的方法解决问题的有效性。3. 感受到数学在日常生活中的广泛应用,培养应用意识和解决实际问题的能力。学情分析有化是一种重要的数学思想方法,可有效地分析和解决问题。本单元主要以“找次品”这一操作活动为载体,让学生通过观察、猜测、推理的方法感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力。这些内容对五年级的学生来说有一定的难度,所以应让学生在具体操作和试验中感悟、体会,由此使学生养成勤于思考、勇于探索的精神。教学重点学会解决“找次品”这类问题的方法。
这部分内容教学两位数减两位数的口算,这是学生在学习了两位数减整十数、一位数,以及千以内笔算减法的基础上进行教学的。例题仍以购买玩具火车和玩具汽车为题材,让学生通过求两件玩具的价格差引入新的内容,引导学生探索两位数减两位数的口算方法并比较退位减与不退位减在算法上的异同,正确地理解和掌握算法。教材有意识地让学生经历算法的发现过程,并在合作与交流的活动中,理解和掌握比较合理的口算方法。“想想做做”也是先安排了一些基本练习,帮助学生及时地巩固两位数减两位数的口算方法,然后让学生通过题组比较,进一步完善算法,并重视通过估算促进口算能力的提高。再引导学生综合运用所学知识,解决一些生活中的实际问题。二,说教法1)创设学生熟知的生活情景,把解决实际问题与计算教学结合起来。2)重视让学生在尝试探索的学习过程中,经历算法的发现过程。
学生在一年级上册开始学习简单的分类整理,初步认识了象形统计图和简单的统计表。本课继续学习统计,以整理随机出现的简单数据为主要内容,并把经过整理的数据填进简单的统计表。在统计过程中,让学生学到一些比较容易的统计方法,渗透统计的思想和方法,激发培养学生的学习热情和信心。三、教学目标:1、使学生体验数据的收集、整理、描述和分析的过程,了解统计的意义,会用简单的方法收集和表现数据。2、认识条形统计图,明确用1格表示5个单位的表现形式,能根据统计图提出问题,并初步进行简单的预测。3、在学习过程中培养学生的实践能力与合作意识。四、重点难点教学重点:使学生认识条形统计图,明确可以用一格表示5个单位。教学难点:引导学生通过合作讨论找到切实可行的解决问题的方法。
二、说教法在本课的教学中我力求改变过去重知识、轻能力,重结果、轻过程,重教法、轻学法的状况。树立以“以学生发展为本”、“以学定教”、“教为学服务”的思想。本课的教学方法有创设情境法、引导探究法、类比迁移法、归纳总结法、组织练习法等。三、说学法我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而我们要特别重视学生学习方法的培养和指导。本课学生的学习方法主要有:自主发现法、合作探究法、类比迁移法、归纳总结法、感知体验法等。四、说教学程序课标指出教学应遵循学生学习数学的心理规律,强调从学生已有生活经验出发,将数学活动置身于实施的生活背景之中,为他们提供观察操作、实现的机会。根据本节课的教学内容我设置了如下四大环节:(一)复习旧知、引入新课。
我说课的内容是小学数学二年级下册《1000以内数的认识》,本节课的教学时建立在学生学习过百以内数的认识基础之上的,是学生对100以内数的认识的延伸和扩展,同时,它有着一个非常重要的地位,就是要为学习10000以内数的认识做好铺垫,因为,1000或10000都是比较大的数,在学生的认识还很有限的基础上,如何让学生能尽快的建立起大数的概念和意识,在这里格外重要,对于这一部分内容,《小学数学课程标准》中是这样阐述的:能认、读、写万以内的数,会用数表示物体的个数或事物的顺序和位置,能说出各数位的名称,识别各数位的数字的意义;结合现实素材感受大数的意义,并能进行结算。根据这一阐述,我把本课时的教学目标定义以下几点:1、学习1000以内的数,体验数的产生和作用。2、会数1000以内的数,认识计数单位“千”,体会十进关系。3、让学生经历观察、猜想、操作等数学活动过程,结合现实材料感受大数的意义,逐渐发展学生的数感。
低年级学生注意力不易持久。单调的练习学生容易产生厌倦情绪,降低练习效率。况且对于笔算两位数加减两位数,学生们掌握得都很熟练了。针对这些,我把整堂课的设计注重以下几点:1、设计生活化的教学内容。《标准》指出:“人人学有价值的数学。”“有价值”的数学应该与学生的现实生活和以往的知识体验有密切的关系,是对他们有吸引力、能使他们产生兴趣的内容。这节课我的教学内容是笔算。开始时我并没有直接出示两位数加减两位数的笔算练习,从旧知到新知。而是试图从日常生活入手,创设一个帮助老师选择买东西的情境,希望通过帮助老师从2种价格不同的电风扇和从2种价格不同的洗衣机中各选择一样,计算价格,力图从真实的生活环境中解决问题,放开手让他们去学。况且用学生熟悉的,有兴趣的,贴近他们现实生活的内容进行教学,才能唤起他们的学习兴趣,调动学习积极性,使学生感受到生活与数学知识是密不可分的,使数学课富有浓郁的生活气息,从而产生学习和探求数学的动机,主动应用数学去思考问题、解决问题。
⒊演示操作法:直观演示能给学生提供鲜明的感性材料,通过多种感官协同作用,利用学生在操作中建立表象,使抽象思维转化为形象思维。⒋谈话法:运用师生之间的谈话组织教学,既可使学生的思维方向明确,又便于教师了解学生理解和掌握知识的程度。⒌练习法:通过各种练习,加深学生对知识的理解和掌握,形成熟练的解题技能,进一步发展学生的思维。(2)、说学法古人云:“教之以鱼,只供一餐,授之以渔,受用终生”,教师既管教,又要管学,把教落在学上,重点是把学习方法教给学生,使学生乐学、会学,教学中,让学生学习并初步掌握的学习方法有:⒈归纳法:通过例题的教学,经过理解、分析、归纳推导出除法的意义。⒉观察法:指导学生仔细观察,学会找知识的生长点和解题的关键所在。
例1用为每个小朋友准备春游食品的活动,由“应该每份同样多”引出“平均分”,让学生认识“每份分得同样多,叫平均分”。接着,通过例2、例3,让学生经历“平均分”的过程,建立起“平均分”的概念。二、说教学目标二年级学生年龄小,他们以直观思维为主,不易理解抽象的概念。虽然他们在平时的生活实践中已有一定的分物品的经验,但缺少平均分物品的实践经验。因此,他们对于“什么是平均分”,“怎样平均分物品”都感到比较困惑。所以,本节课的教学目标可以预设为:1.引导学生在具体情境中感受“平均分”,在分东西的实践活动中建立“平均分”的概念,理解“平均分”的含义。2.让学生经历“平均分”的过程,在具体情境与实践活动中明确“平均分”的含义,掌握“平均分”物品的不同方法。3.培养学生自主探究的意识和解决问题的能力。
(二)解决问题,总结方法《新课程标准》主张充分挖掘数学教材潜在的“再创造空间”,让学生亲自经历将实际问题抽象成数学模型并进行解释与应用的过程,让学生最大限度地参与数学知识的发现、提出、形成、应用的再创造过程,以促进学生主动的发展。因此我创设了福娃晶晶为迎接奥运会做准备的数学情景,设计了四组有关7、8、9的用除法算式解决的数学问题。1、出示晶晶的问题:(1)做了56面彩旗,平均每行挂7面,能挂多少行?(2)做了56面彩旗,要挂成8行,平均每行挂多少面?(3)做了49颗五角星,平均分给7个小朋友,每人多少颗五角星?(4)准备了27个气球,平均9个摆一行,能摆多少行?2、解决晶晶的问题:让学生根据"友情提示"的要求完成自学内容后再小组交流、全班交流。在交流过程中引导学生观察:56÷8=7和56÷7=8这两个算式,从而发现一句乘法口诀可以计算两个除法算式。
从课前学生欣赏春天的美景入手,自然地过渡到小朋友去春游划船,以激发学生的学习兴趣。课件出示主题图,先让学生观察小朋友来到美丽的公园划船,玩得可开心了,再仔细观察第二幅照片,让学生帮助图中小朋友解决问题,从而让学生经历联系上、下图理解题意的过程,学会收集有用信息,在实际生活中发现问题,提出问题。初步学会列综合算式,了解用递等式计算来解决问题,并在实际意义的背景之下让学生感受并理解乘除两步运算的运算顺序,会按从左到右的顺序进行运算。并在实际问题解决的过程中,让学生尝试运用分析、推理等方法分析问题,提高分析问题、解决问题的能力,从而也使学生获得成功的体验,树立自信心。最后,通过帮小朋友“分矿泉水”、宣传牌上三角形的数量、体育课上分组等练习,加深学生对乘除两步运算算理的理解,从而提高读图、识图、语言表达图意和提出问题、解决问题的能力。
(二)师生互动,验证猜想活动二:学生自由探索,圆柱体积计算方法以小组为单位设计出一种自己学过的知识计算圆柱体积的方法,通过合作,学生想到的办法可能有:①把橡皮泥捏成圆柱体,再捏成长方体,量出长方体的长、宽、高。算出长方体的体积,也就是圆柱的体积。②把圆柱形的杯子装满沙子,铺平,然后把沙子倒入较大的长方体的盒子中,量出长方体盒子的长、宽及沙子的高,算出沙子的体积,也就是圆柱的体积。如果杯子的厚度忽略不计的话。杯子的容积就是杯子的体积。③把一个圆柱体放到装有(正)长方体容器中,水会上升,上升的水的体积就是圆柱的体积。(这一活动的设计,是通过观察力求让学生体验到我们在计算圆柱的体积时都是把圆柱的体积转化为其他形体的体积来进行计算的。由此,也就可以验证学生的猜想是否准确,但是为了不影响学生的求知欲,我设计了这样一个问题:你能用这些方法来计算我们的学校门口这根圆柱形柱子的体积吗?
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的,圆柱的体积是圆锥的3倍。第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= Sh。第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
1、组织理解近似数的含义。出示例8的主题图。聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?组织学生进行讨论、交流。思考:后半句约1500人是什么意思?小组汇报:A、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)引导学生明白近似数更容易记,因为它正好是正百数。出示例8主题图比较一下1506和1500这两个数,体会一下准确数和近似数哪个数更容易记住
一、 说教学内容教材第75页例6及练习十六第1、2、4题。二、 说教材本教材是学生已经掌握1000以内数的读法、写法以及10000以内数的认识基础上进行教学的。三、 说教学目标知识能力目标:通过本节课的学习,使学生在已有知识的基础上,学会读写万以内的数(中间、末尾有0),且能总结出读写万以内数的方法。情感目标:让学生学习用具体的数描述生活中的事物并与他人交流,培养学习数学的兴趣和自信心,逐步发展学生的数感。四、 说重点、难点重点:学会读写万以内的数。(末尾、中间有0)难点:学会读写万以内的数。(末尾、中间有0)五、 说教法用引导、自学的教学方法来达到课堂教学的最佳效果。六、 说学法我准备在小组合作、小组交流探索方面做重点指导,引导学生怎样自学,怎样提高有价值的问题。
学生自由编题后,教师出示:跷跷板乐园有3个跷跷板,每个跷跷上有4人在玩,还有7人在旁边看。跷跷板乐园里一共有多少人?(2)全班读题后提问,题目的已知条件和问题是什么?根据题目的已知条件,能不能一步就算出跷跷板乐园里一共有多少人?(不能)那我们要求“跷跷板乐园里一共有多少人?”应该知道什么条件?(有多少人在玩?旁边有多少人?)大家想一想我们第一步要先算什么?(有多少人在玩跷跷板)根据题目的哪些条件可以求出“有多少人在玩跷跷板”?(有3个跷跷板,每个跷跷板上有4人在玩)怎样列式?[4X3=12(人)]为什么用乘法计算?(因为它是求3个4是多少,所以用乘法计算)现在我们已经知道有12人在玩跷跷板,那第二步该算什么?(跷跷板乐园里一共有多少人)怎样列式?[127=19(人)]谁会用一个算式表示?[4X37=19]请一个同学说一说每一步表示的意思。应用题解答完要记住写答案。
在此基础上教师又适时提出问题“根据你摆的飞机,谁能提个问题让大家猜一猜?”学生兴趣盎然,提出了诸如“我用10根小棒摆几架飞机”的问题,由此引出“求一个数里含有几个另一个数的除法含义”,为学习“一个数是另一个数的几倍”奠定了基础。在学生动手操作、动眼观察的基础上,课件出示例题中小强提出的问题:“我摆了3架飞机,我用的小棒根数是小红的几倍?”怎么解决这个问题呢?我请学生在小组里讨论,在动脑思考、充分探究中找到了“求一个数是另一个数的几倍是多少”的解题思路,即“求一个数是另一个数的几倍”的含义,就是“求一个数里含有几个另一个数”,用除法计算,15÷5=3。在这样的教学活动中,学生经历了解决问题的过程,学会了用数学的思维方式去观察、分析实际问题,学会了从数学的角度提出问题、理解问题、解决问题,培养了综合运用所学知识解决实际问题的能力。
最富趣味的是荷兰艺术家埃舍尔,他到西班牙旅行参观时,对一种名为阿罕拉的建筑物有很深的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺了种类繁多、美仑美奂的马赛克图案。Escher用数日的时间复制了这些图案,并得到了启发,创造了各种并不局限于几何图案的密铺图案,这些图案包括人、青蛙、鱼、鸟、蜥蜴,甚至是他凭空想象的物体。他创作的艺术作品,结合数学与艺术,给人留下深刻的印象,更让人对数学产生了另一种看法。欣赏埃舍尔的艺术世界:2、动手创作。(小小设计师)看了大艺术家的作品,你现在是不是也有了创作的冲动?下面,请你选一种或几种完全一样的图形进行密铺,可以自己设计颜色,比一比,谁的设计更美观、更新颖。(交流,展示)四、总结:谈收获体会我们今天只是研究了一些规则图形的简单的密铺。生活中还有各种各样的密铺现象。同学们可以到生活中去观察,也可以上网浏览。
密铺的历史背景1619年——数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。1891年——苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。 1924年——数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。
因此,本套教材中删去了“整除”的数学化定义,而是借助整除的模式na=b直接引出因数和倍数的概念。在本册教材中,由于允许学生采用多样的方法求最大公因数和最小公倍数,分解质因数也失去了其不可或缺的作用,同时,也是为了减少这一单元的理论概念,教材不再把它作为正式教学内容,而是作为一个补充知识,安排在“你知道吗?”中进行介绍。由于这部分内容较为抽象,很难结合生活实例或具体情境来进行教学,学生理解起来有一定的难度。在过去的教学中,一些教师往往忽视概念的本质,而是让学生死记硬背相关概念或结论,学生无法理清各概念间的前后承接关系,达不到融会贯通的程度。再加上有些教师在考核时使用一些偏题、难题,导致学生在学习这部分知识时觉得枯燥乏味,体会不到初等数论的抽象性、严密性和逻辑性,感受不到数学的魅力。所以在教学中应注意以下两点: (1)加强对概念间相互关系的梳理,引导学生从本质上理解概念,避免死记硬背。(2)由于本单元知识特有的抽象性,教学时要注意培养学生的抽象思维能力。
(3)按每千克涂料粉刷3.5 m2计算,可求出共需要涂料:1600÷3.5≈460(千克);(4)根据涂料的型号及费用,选择合适的涂料。师:选择涂料时,要考虑很多因素,如价格、耐用期、消费心理、环保等,要怎么选择呢?学生可以把几种涂料进行对比,一起讨论决定,同时学会在交流中理解接纳别人较好的建议:如:A型,优点:价格便宜,需要19桶,总共才5700元;缺点:耐用期太短,两年后又要重新粉刷;B-1型和B-2型,虽然桶装量不同,但价格和耐用期都处在中游水平;C型和D型,优点:耐用期长,最划算;缺点:价格太高,不符合人们的消费心理,也不可能持续那么长时间,至少5年就要更换一下样子。综合以上价格、耐用期、消费心理,选择B-1或B-2型比较划算。而这两种比较来看,B-2型更便宜一些,所以,最后确立用B-2型涂料。