提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

律师助理求职简历

  • 北师大初中数学九年级上册用树状图或表格求概率1教案

    北师大初中数学九年级上册用树状图或表格求概率1教案

    由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.

  • 北师大初中数学九年级上册用公式法求解一元二次方程2教案

    北师大初中数学九年级上册用公式法求解一元二次方程2教案

    二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况

  • 北师大初中数学九年级上册用公式法求解一元二次方程1教案

    北师大初中数学九年级上册用公式法求解一元二次方程1教案

    易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.【类型三】 根的判别式与三角形的综合应用已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,请判断△ABC的形状.解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.解:将原方程转化为一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有两个相等的实数根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案设计

    【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案设计

    教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案

    【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教案

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教学设计

    【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40

  • 教师评模晋级管理制度

    教师评模晋级管理制度

    二、服从分配,支持学校工作,工作积极认真负责,利益面前不琐屑较量。  三、和上级保持一致,顾大局、识大体,是非明确,旗帜鲜明。一切以工作为重。  四、积极参加政治、业务学习,遵守会议纪律,发言积极有见解。  五、同志之间上下级之间团结友爱,不挑拨是非,关系企业管理,有正气和正直感。

  • 学校教师宿舍管理制度

    学校教师宿舍管理制度

    2、教师不得随意让自己的朋友等校外人员在校住宿,也不得带学生在校住宿。  3、教师宿舍必须经常保持卫生干净、摆放整齐,门窗干净,宿舍周围(走廊卫生干净).  4、教师宿舍必须注意节约水电,爱护好公共财物,坚决杜绝“长流水”,“长明灯”现象。  5、教师将自己的衣服晾在走廊时,请及时将地板上的滴水托干,防止摔跤。

  • 学校教师管理制度

    学校教师管理制度

    二、校级骨干教师岗位要求  、爱岗敬业,热爱学生,富有奉献意识和合作精神,高质量做好教育教学工作。  2、加强自身学习和修养。每年研读一本教育专著,并研读1-2种相应专业的教学期刊,并做好学习笔记或撰写好学习体会。  3、积极发挥示范和带头作用。骨干教师指导青年教师1~2名或带好一个兴趣组,并有具体指导方案和过程安排,每学期本校上公开课1~2次。

  • 【高教版】中职数学拓展模块:3.2《二项式定理》教学设计

    【高教版】中职数学拓展模块:3.2《二项式定理》教学设计

    一、定义:  ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.

  • 高教版中职数学基础模块下册:10.1《计数原理》教学设计

    高教版中职数学基础模块下册:10.1《计数原理》教学设计

    授课 日期 班级16高造价 课题: §10.1 计数原理 教学目的要求: 1.掌握分类计数原理与分步计数原理的概念和区别; 2.能利用两个原理分析和解决一些简单的应用问题; 3.通过对一些应用问题的分析,培养自己的归纳概括和逻辑判断能力. 教学重点、难点: 两个原理的概念与区别 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》、课件 授课执行情况及分析: 板书设计或授课提纲 §10.1 计数原理 1、加法原理 2、乘法原理 3、两个原理的区别

  • 人教版高中政治必修2政府的职能:管理与服务教案

    人教版高中政治必修2政府的职能:管理与服务教案

    (一)知识目标1、识记我国政府职能的主要内容;政府履行其职能的作用。2、理解国家性质与国家职能的关系;我国政府职能的主要内容及履行的原因;我国政府是便民利民的政府;管理和服务是政府的基本职能。3、运用生活中的事例,评议政府履行职责的表现;结合日常生活的事例,感受政府的作用。(二)能力目标1、从国家行使国家职能的具体事实,判断其属于何种职能2、说明政府履行其职能对我们生活和社会经济发展的影响和作用。(三)情感、态度与价值观目标通过对我国的政府职能的学习,使同学们进一步升华对我国的政府是人民的政府的认同。同时,公民也应向政府寻求解决自身困难,维护自身合法权益的帮助,这也有助于政府工作的改进。★教学重点、难点政府职能的问题★ 教学方法教师启发、引导,学生自主阅读、思考,讨论、交流学习成果。

  • 人教版高中政治必修2政府的职能:管理与服务教案

    人教版高中政治必修2政府的职能:管理与服务教案

    《政府的职能:管理与服务》是高一《政治生活》第二单元第一课。现代社会,人们的社会生活离不开政府的组织和管理,政府是执行国家权力的机关。第二单元的主题内容是《为人民服务的政府》,分析政府与人民的关系。而本框则通过讲述政府的四个方面的主要职能,让学生了解到我们的生活接受政府的管理,又享受政府提供的各种服务,从而体会到我们的政府是便民利民的政府,初步明确政府为人民服务的宗旨。二、教学目标(一)知识目标1、识记我国政府职能的主要内容;政府履行其职能的作用。2、理解国家性质与国家职能的关系;我国政府职能的主要内容及履行的原因;我国政府是便民利民的政府;管理和服务是政府的基本职能。3、运用生活中的事例,评议政府履行职责的表现;结合日常生活的事例,感受政府的作用。(二)能力目标1、 从国家行使国家职能的具体事实,判断其属于何种职能2、 说明政府履行其职能对我们生活和社会经济发展的影响和作用。

  • 2023年度人事管理人员个人工作总结(述职报告)

    2023年度人事管理人员个人工作总结(述职报告)

    二、存在的问题和不足一是留人机制有待完善。一方面,面试过程中已通过面试的部分应聘人员,后期并未入职报道;另一方面,本年度新进人员辞离职人数达到X人,其中X人为研究生学历。现有的人员用工方式不够有吸引力,造成了引不进、留不住局面。二是人事管理制度办法有待健全。人员录用、试用期和解聘的相关管理办法,人员证书管理、专业技术岗位设置管理办法,人员辞离职的相关工作程序和管理办法,都还需要进一步制定和完善。三、下一步工作努力方向为适应在深化机构改革中,面临的新形势、新任务和新要求,下一步工作中,人力资源室全体人员将继续埋头苦干、勇毅前行,立足本职岗位职责,不断调整工作思路、改进工作方式方法;通过对现有人事管理制度的执行情况进行分析和梳理,有针对性的查漏补缺,确保各项制度的健康持续运行,为干部职工创造更加良好的成长环境和制度保障,充分激发人才队伍的生机活力,为持续推进XXX的高质量发展做出应有的贡献。

  • 有关教师个人学习职业道德规范心得体会优选例文

    有关教师个人学习职业道德规范心得体会优选例文

    第三,要奉献爱心。崇高的师爱表现在对学生一视同仁,绝不厚此薄彼,按成绩区别对待。要做到“三心俱到”,即“爱心、耐心、细心,”无论在生活上还是学习上,时时刻刻关爱学生,特别对那些学习特困生,更要付出特殊的关爱,切忌言行过激、办事草率。对学生细微之处的改变也要善于发现,发现他们“闪光点”,并且多加鼓励,培养学生健康的人格,树立学生学习的自信心,注重培养他们的学习兴趣。  第四,要以身作则。教师的一言一行、一举一动对学生的思想、行为和品质具有潜移默化的影响,学生们都喜欢模仿。为此,教师一定要时时处处为学生做出榜样,凡是教师要求学生要做到的,自己首先做到;凡是要求学生不能做的,自己坚决不做。只有严于律已,以身作则,诲人不倦,才能让学生心服口服,才能把教师当成良师益友。

  • 关于中小学教师职业道德规范学习心得体会八篇

    关于中小学教师职业道德规范学习心得体会八篇

    1、修师德,从勤于育人做起  当您漫步在校园时,您便会发现在这块实验田里,每一天都有一串动人的故事在编织着。在教书育人中我们要努力做到“三心俱到”,即“爱心、耐心、细心”,无论在生活上还是在学习上,时时刻刻关爱学生,特别是对那些特困生,更是“特别的爱给特别的你”,切忌易怒易暴,言行过激,对学生有耐心,对学生细微之处的好的改变也要善于发现,并且多加鼓励,培养学生健康的人格,树立学生学习的自信心,注重培养他们的学习兴趣。  2、修师德,从小小微笑做起  热爱学生,是师德的永恒话题。如何体现教师的爱,如何让学生接受教师的爱,我认为,最简单、最容量做到的、最好的效果是从微笑面对学生做起。

  • 助廉家属发言 家庭助廉家属发言材料

    助廉家属发言 家庭助廉家属发言材料

    同时还要自觉低制各种腐败的诱惑。淡泊名利,始终保持健康平和的心态。坚持原则,秉公办事,公私分明,勇于同各种不正之风作斗争,做到不以权谋私,不徇私舞弊,不收不义之财,不拿非分之礼,用实际行动把好家门,拒绝腐败。常吹家庭“廉政风”,管好家庭“廉政账”,及时提醒督促家人自重、自省、自警、自励,做到“一身正气上班去,两袖清风回家来”;防微杜渐,从严治家,珍惜幸福生活,做到洁身自好,拒腐不沾。

  • 在捐资助学资助金发放会议上的讲话

    在捐资助学资助金发放会议上的讲话

    一是希望爱心企业家常怀慈善之心,举力奉献。结对帮扶助学,是公益事业的重要组成部分,离不开在座各位企业家的热情关注和无私奉献,你们的付出是彬州教育事业发展和培养优秀人才的重要推动力。因此,真诚希望你们坚持经济效益和社会效益并重,能一如既往地关心支持全市扶贫助学事业,并通过你们带动更多企业、社会组织和各界人士参与到捐资助学和扶贫帮困的活动中来,用爱心点燃寒门学子的成才希望,用行动撑起贫困学生的一片蓝天。

  • 北师大初中数学八年级上册二次根式及其化简1教案

    北师大初中数学八年级上册二次根式及其化简1教案

    方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.

  • 北师大初中数学八年级上册二次根式及其化简2教案

    北师大初中数学八年级上册二次根式及其化简2教案

    属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。

上一页123...8910111213141516171819下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!