提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

春季期第二学期4月份国旗下讲话

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    直线的两点式方程教学设计人教A版高中数学选择性必修第一册

    解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • (说课稿)识字《中国美食》部编人教版二年级上册语文

    (说课稿)识字《中国美食》部编人教版二年级上册语文

    一、说教材《中国美食》是统编语文小学二年级下册第三组识字单元第四篇课文。课主要通过各种各样的美食图片,让学生了解中国美食,通过认识这些美食从而学习生字。通过认识这些色香味俱全的美食,认识中国的美食化,增强民族自豪感,培养学生热爱家乡、热爱祖国的感情。 本单元为识字单元,重在培养学生的识字兴趣与能力。依据单元特点及新课标要求,低年级学生能借助汉语拼音认读汉字,喜欢学习汉字,有主动识字的愿望,学会用普通话正确、流利地朗读课问。二、说学情二年级学生已经有了一定的知识基础,并掌握了不少的识字方法,因此生字学习障碍相对而言较少。但他们的生活经验毕竟有限,对文中图片中的菜品名称不是全都了解,菜肴也不全都吃过。教学时要求学生认知菜肴名称,了解菜肴,通过学习增强学生对中国美食的喜爱,对祖国的热爱之情。

  • 人教部编版道德与法制二年级上册欢欢喜喜庆国庆说课稿

    人教部编版道德与法制二年级上册欢欢喜喜庆国庆说课稿

    通过学生个说,资源共享、相互学习,了解国旗、国徽图案象征意义。通过王二小、黄继光、赵一曼几位烈士故事,走进中国解放战争、抗日战争炮火纷飞的年代,“国旗的鲜红是烈士的鲜血染红的”深入心田,让学生真切感受到新中国的生日来之不易。突破教学重点。活动三设计意图:捕捉课堂情感的高潮,巧妙宣泄在儿歌诵读中。将学生对英雄的崇敬之情推向一个崭新高度,深刻地领悟高尚的爱国情操。播放升旗视频,在情境创设中学生行注目礼、唱国歌,心中涌动的激情非同往昔。爱国主义的种子已经悄然撒播。攀升了教学的难点。活动四设计理念:通过找一找,学生明白了在政府机关、校园、祭奠先烈陵园、运动员领奖台等地方国旗高高飘扬。了解到机关、单位、集体才能升挂国旗。绘本中的情境较为常见,通过议一议不少学生都遇到过,但却不知如何正确地处理,这一环节也是本课回归生活的重要支点。通过小组讨论,教师指导和补充,引导学生爱护国旗和国徽,并体现在日常行为中。

  • (说课稿)《沙滩上的童话》部编人教版二年级上册语文

    (说课稿)《沙滩上的童话》部编人教版二年级上册语文

    一、说教材《沙滩上的童话》是统编语文小学二年级下册第四单元的一篇课文。这是一个非常感人的故事,课文比较具有童趣,与孩子的生活相贴近,符合孩子的年龄特点。 作者用诗一般的语言讲述了一群孩子在沙滩上垒起一座城堡,然后展开想象的翅膀编织了一个美丽的童话:城堡里住着一个凶恶的魔王,抢走了美丽的公主……最后,这群孩子成为攻打城堡的勇士,他们炸死了魔王,救出了公主。故事一方面展现了孩子们快乐缤纷的童年生活,另一方面也歌颂了一种人间的善良温情与正义。在孩子们的童话中,那对生活的热爱之情,那纯真地对他人的关爱和帮助,尽显人性之美。二、说学情二年级下学期,学生已经具备了一定的学习字词的能力和自主阅读的能力。这篇课文的词语比较浅显,可以让学生在阅读中自己积累。对于生字的教学,我重点讲述容易混淆的生字,同时,这样也可以从现在开始培养学生养成良好的预习及阅读习惯。 但学生由于年龄小,注意力不够集中,所以更喜欢情节性较强的故事,需要教师引导在故事中体验情感。

  • 人教A版高中数学必修一二次函数与一元二次方程、不等式教学设计(2)

    人教A版高中数学必修一二次函数与一元二次方程、不等式教学设计(2)

    三个“二次”即一元二次函数、一元二次方程、一元二次不等式是高中数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具 高考试题中近一半的试题与这三个“二次”问题有关 本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法。课程目标1. 通过探索,使学生理解二次函数与一元二次方程,一元二次不等式之间的联系。2. 使学生能够运用二次函数及其图像,性质解决实际问题. 3. 渗透数形结合思想,进一步培养学生综合解题能力。数学学科素养1.数学抽象:一元二次函数与一元二次方程,一元二次不等式之间的联系;2.逻辑推理:一元二次不等式恒成立问题;3.数学运算:解一元二次不等式;4.数据分析:一元二次不等式解决实际问题;5.数学建模:运用数形结合的思想,逐步渗透一元二次函数与一元二次方程,一元二次不等式之间的联系。

  • 春节回乡调研报告

    春节回乡调研报告

    (一)家乡整体面貌大幅改善。原来村里村外都是颠簸不堪、年久失修的泥巴路,在政府的帮扶下,现在村里的每一条路都经过了重新修整,一眼望去,宽敞、笔直的水泥路使整个村子显得格外明朗。村里的各个路口也都树立了相应的标识牌、路面标线等交通设施。彻底改掉了往日小轿车进村困难,下雨天车轮陷入泥坑中无法驶出等问题。新道路两旁,统一种植了绿色植物,村里统一放置了环保垃圾桶,并有专人定期进行清理

  • 春节回乡调研报告.

    春节回乡调研报告.

    (一)家乡整体面貌大幅改善。原来村里村外都是颠簸不堪、年久失修的泥巴路,在政府的帮扶下,现在村里的每一条路都经过了重新修整,一眼望去,宽敞、笔直的水泥路使整个村子显得格外明朗。村里的各个路口也都树立了相应的标识牌、路面标线等交通设施。彻底改掉了往日小轿车进村困难,下雨天车轮陷入泥坑中无法驶出等问题。新道路两旁,统一种植了绿色植物,村里统一放置了环保垃圾桶,并有专人定期进行清理。通过对村民进行垃圾分类宣传和监督管理,现在人们不再将垃圾倒在家门口定期烧掉或是倒入河流,街道也变得干净了

  • 春节活动策划方案

    春节活动策划方案

    专区的陈列主要以地堆的形式为主,地堆必需以POP标注,建议全部用枪纸标价。若专区在主通道或入口处,在专区的正前方用彩灯制作一个拱门,彩灯以闪烁为主要表现形式。

  • 春节年会策划方案

    春节年会策划方案

    备注:1、在节目演出期间,每半个小时穿插一次幸运观众的抽奖,每次抽取2位幸运观众共12位

  • 中班语言《春天,你好》说课稿

    中班语言《春天,你好》说课稿

    《醒来了》这一活动是主题《春天,你好》中的第五个活动,前面的四个活动,如《春游去》、《春回大地》、《郊游》等都已让幼儿充分感受到了春天给人们带来的快乐,春天的勃勃生机,使幼儿进一步萌发了对大自然的热爱之情。尤其是小动物,幼儿天生喜欢,但是春天来了,小动物们都怎么样了?出来了没有,它们又在干什么?这一切的问题都在吸引着幼儿,去求知、去探索。《纲要》中明确规定:教师应成为幼儿学习活动的支持者、合作者、引导者;教师还应敏锐地捕捉到孩子们在日常生活中新的关注点、兴奋点和新的发展需要,适时适宜的组织活动,培养孩子的好奇、好问、乐于探索的精神等。基于此,《醒来了》这一活动是前几个活动的深化、升华。通过这一活动的组织,不仅能进一步增进幼儿对动物与季节变化的认识,还能使幼儿通过不同形式的学说故事角色的对话。强化语言的学习,增加对动物的情感认识及对文学作品的喜爱,从而在趣味性活动中自然地突破本活动的重点与难点。

  • 小班综合《春天来了》说课稿

    小班综合《春天来了》说课稿

    春天,这是一个万物复苏、生机勃勃的季节,对于这种季节变化,幼儿非常好奇,家长也会带孩子到公园等地踏青游玩,所以幼儿对春天的特征以及春天的美有一定的认知,但都是零散的,所以他们对春天的认识有一定的片面性,《纲要》中指出:引导孩子接触自然环境,使之感受自然界的美与奥妙,激发幼儿的好奇心和认识兴趣,因此,我设计了本次教学活动,让幼儿在轻松快乐的环境中感知春天美、了解春天的特征。1.感知春天,了解春天的特征。(了解春天的季节特征,感受春天的美)2.感知春天美,尝试欣赏春天美。(通过贴贴、画画、讲讲等方式表达对春天的认识和喜爱)

  • 《春天是一本书》说课稿

    《春天是一本书》说课稿

    《纲要》指出“教育活动内容的选择,应贴近幼儿的生活来选择幼儿感兴趣的事物和问题,又有助于拓展幼儿的经验和视野”。诗歌《春天是一本书》以它优美的节奏和朴素的语言,赞美春天的美丽、大自然的神奇。诗歌中运用了比喻的修辞手法,在幼儿面前展示了一个充满童趣的世界,有助于培养幼儿的创造力和想象力。《纲要》指出“教育活动目标要以《幼儿园工作规程》和《纲要》所提出的各领域目标为指导,结合本班幼儿的发展水平、经验和需要来确定”。1.理解诗歌的内容,掌握诗歌中比喻手法的运用。2.结合春天的美景,幼儿大胆想象,尝试按诗歌格式进行自主创编。3.感受春天的美,激发幼儿热爱自然的感情。

  • 大班美术《春暖花开》说课稿

    大班美术《春暖花开》说课稿

    各位老师好,我是12级学前8班的xx,今天我带来的说课内容是大班美术活动《春暖花开》。先说说我的设计意图:《纲要》指出幼儿教育目标:“初步培养幼儿对美术的兴趣以及对大自然中美的欣赏力。”由于桃花在我们生活中不是很常见,孩子们也缺乏了解,于是我设计了本次活动,让孩子们初步认识桃花,并能学习运用吹画和棉签画的方法来表现桃花的特点,在创作的过程中既能体验其中的乐趣,又能感受成功的喜悦,可以很好地提高幼儿的手眼协调能力和对美的欣赏能力。再说说我的目标定位:活动的目标是教育活动的起点和归宿,对活动起着导向作用。根据大班幼儿年龄特点及实际情况,以布鲁姆的《教育目标分类学》为依据,我确定了认知、技能、情感三方面的目标:1.了解桃树和桃花的基本特征。(认知)2.能用吹画和棉签画来表现桃树和桃花(技能)3.体验吹画和棉签画的乐趣。(情感)活动的重点:学习用吹画和手指点画的方法表现桃树和桃花的基本特征。

  • 青春的情绪教案 3篇

    青春的情绪教案 3篇

    四、教学过程  环节一:新课导入(游戏)  游戏规则:教师出示喜怒哀惧的情绪卡片,并让学生作出相应的表情。  教师总结:像同学们刚刚表演出的表情,开心、发怒、悲哀、惧怕都是我们在青春期经常碰到的情绪,除此之外还有哪些情绪类型,它们又有什么特点和作用呢?引出课题《青春的情绪》。

上一页123...216217218219220221222223224225226227下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。