解析:①过原点时,直线方程为y=-34x.②直线不过原点时,可设其方程为xa+ya=1,∴4a+-3a=1,∴a=1.∴直线方程为x+y-1=0.所以这样的直线有2条,选B.答案:B4.若点P(3,m)在过点A(2,-1),B(-3,4)的直线上,则m= . 解析:由两点式方程得,过A,B两点的直线方程为(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又点P(3,m)在直线AB上,所以3+m-1=0,得m=-2.答案:-2 5.直线ax+by=1(ab≠0)与两坐标轴围成的三角形的面积是 . 解析:直线在两坐标轴上的截距分别为1/a 与 1/b,所以直线与坐标轴围成的三角形面积为1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.解析(1)直线AB的方程为y-46-4=x-0-2-0,整理得x+y-4=0;直线BC的方程为y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直线AC的方程为x-8+y4=1,整理得x-2y+8=0.(2)线段AC的中点为D(-4,2),直线AC的斜率为12,则AC边上的垂直平分线的斜率为-2,所以AC边的垂直平分线的方程为y-2=-2(x+4),整理得2x+y+6=0.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
摆上桌的是:一盘肥腴的整鸡,是蒸的,配有一碗汤;一盘风干猪肉片,切得有一厘米厚,肥的白、瘦的红,咸香气馋人;芹菜炒豆腐干,在盘子里堆得老高,还有一碗山药排骨汤。这一组粗、土、简、拙的农家菜品,就是小时候去乡下舅舅家里吃的啊,舅妈的厨艺,还比这要精细很多,哪会把肉片切得这么厚。
四、说教学方法: 在教学活动中,我积极树立“以学生为主体”的教学思想,发挥学生的主动精神,使之成为学习的主人。因此,我设计的教法是:创设情境,自主探究、朗读感悟、启发想象等方法,引导学生主动参与到学习活动中。 我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。学生对神话故事兴趣浓厚,尤其对神话故事中的英雄人物更是情有独钟,有较强的表达欲望。为此,我设计的学法是:采用自读自悟,尝试探究。抓住文本中的重点词句,读、说、讲多种学习方式相结合,在老师的引导下主动地富有个性地学习。
一、说教材《古诗三首》是统编小学语文三年级下册第一单元中的第一篇课文。《绝句》这首诗抓住迟日、江山、春风、花草等景物给读者描绘了一幅明丽纷繁的春景图,表达了诗人对初春时节大自然一派生机、欣欣向荣景象的赞美与热爱。 《惠崇春江晚景》成功地写出了早春时节的春江景色,诗人以其细致、敏锐的感受,捕捉住季节转换时的景物特征,抒发了对早春的喜悦和赞美之情。 《三衢道中》通过写诗人行于三衢山道中的见闻,在景物的描绘中融入了自己愉悦的心情,表达了诗人对大自然之美的喜悦与赞美。本单元的主题是通过对学生进行美的熏陶,培养学生热爱大自然的情感。二、说学情 三年级的学生有了一定的古诗学习经验,学生掌握了一定的古诗学习的方法。为此我让学生自主探究,合作交流本诗。
一、教材说明我所执教的第五单元的最后一课,古诗二首的第一课时,《凉州词》是一首边塞诗,写的是边塞将士出征前开怀畅饮,一醉方体的情景,诗歌慷慨激昂,豪情满怀,表现出当时战争的残酷,无常和频繁,反映将士们生活的悲惨、痛苦。体现了盛唐边塞诗的特点,本节课的教学目标是:1、学生2个生字,练习写好6个汉字。2、有感情地朗读并背诵课文。3、通过读这首古诗,感悟边关将士悲苦的生活。教学重点和难点是品读悟诗情。
一、教学理念《语言课程标准》强调指出:“要全面提高学生的语言素养,在基础教育教学中,不仅要注重学生双基的学习与训练,更要注重人文精神的熏陶、文化品味的提高、|审美情趣的培养等。做好这些的前提,教师就要正确地把握语言教育的特点,重视语文课程的熏陶感染,充分利用课堂的实践性,使我们在语文教学中有意识地,全方位地为学生提供语文学习和言语实践的机会,让学生在实践中获得能力。二、说教材1、教材简析《扁鹊治病》是九年义务教育六年制小学语文人教版四年级第八组中的一篇课文。该文取材于战国时名医扁鹊的传说故事,主要写扁鹊多次拜见蔡桓公,并劝诫他及时医治自己的疾病,但蔡桓公坚信自己无病,不肯从医,导致最后病入膏肓,无药可救。故事以蔡桓公这样一个悲惨的结局,警示人们要防微杜渐,善于听取别人的正确意见,否则后果将不堪设想。
一、 说教材。《观潮》这篇课文是义务教育人教版小学语文四年级上册第一组第一课。这组课文是围绕“自然奇观”的专题来写,《观潮》是这组课文的第一课,起着非常重要的引领作用。本文通过作者对潮的生动描写,让我们看到了大潮的奇特、雄伟、壮观,更让我们领略了大自然的魅力,体会大自然那种魔术般的神奇。编者选编这篇课文的目的,一是为了使学生通过阅读感受钱塘潮之“奇”,激发学生热爱大自然、热爱祖国大好河山的情感;二是为了引导学生一边读书一边想象画面,并通过品味重点词句、重点语段,体会课文在表达上的特点。根据农村中年级学生的特点:知识内容广泛了,很多事情都处于好奇,似懂非懂,开始有独立性,自尊心逐渐增强,思想从单纯走向复杂,开始有自己意向。根据我对新课标的理解,我认为完成这篇课文的学习应该达到以下几个目标:1、 感受大自然的壮观,受到美的熏陶,能把自己的阅读感受与他人交流。2、边读书边想象画面,能联系上下文或结合生活实际体会词句的含义。3、有感情的课文内容课文,背诵课文地3、4自然段。4、认识7个生字,会写13个生字。正确读写“宽阔、笼罩、薄雾”等词语。为了完成以上的教学目标,我要突出引导学生感受钱塘潮的神奇壮观这个重点,突破体会课文中有关语句,想象课文描绘的大潮景象这个难点。
四、说教学方法: 根据新课程标准和理念,并结合学生实际情况,本节课采用: 1.范读教学法,短文生动活波,想象丰富,意蕴深刻,宜于诵读体味。2.设疑引导法:通过设疑引导,鼓励学生多角度探究短文寓意。此外我还用多媒体手段辅助教学。诵读法:短文生动活波,想象丰富,意蕴深刻,宜于诵读体味。讨论法:针对教师提问展开讨论讲述法:通过讲故事的方法。五、说教学过程:(一)故事导入,我来猜多媒体动画展示“女娲补天”的故事,让学生竞猜,并拓展举例,你还读过那些神话故事!如后羿射日,大禹治水,精卫填海,盘古开天辟地,嫦娥奔月等,这些故事都有着雄奇的想像与夸张,但又和现实有一定的联系,它是在人们头脑中经过加工,改造过的现实。今天,我们一起学习《精卫填海》。 设计意图:此环节主要是激发学生的兴趣,拉近学生与神话、与山海经的距离。另外,神话与 传说、民间故事有所不同,教师通过通俗易懂的语言帮助学生对这一概念有一个初步的认识,再自然引出课题。
一、说教材1、教材分析读着这篇文章,使人不由地走进一幅如诗、如梦、如世外田园般的画卷中:明亮而柔和的月光下,阿妈牵着“我”的小手,走啊走,走过村头,走过大道和小路,走过小溪和水塘,走过溪岸和拱桥,走过果园和菜地……山之高,村之静,水之香,塘之趣,果之甜,虫鸣、鸟飞、溪流、人语,无不充盈着温馨、甜美之情。2、教学目标根据《课标》要求、教材特点、以及学生实际,计划两课时完成本课教学任务,下面主要介绍第二课时的教学目标为。①知识与技能:积累文中优美的句子,了解“反复”这一形式的表达效果。有感情地朗读课文,背诵喜欢的部分。②过程与方法:充分调动学生的积极性和主动性,引导学生通过想象理解课文内容,在感情朗读中体会文章的思想感情。③情感、态度、价值观:体验月下景色的美丽。激发学生热爱祖国壮丽山河的感情。体会浓浓的亲情,激发学生爱父母,关心家人的美好情操。
一、知识目标1、继续运用“从内容中体会思想”的方法,在整体感知课文的基础上读懂重点句段,理解课文内容,体会爱的伟大。2、学习作者具体指叙和表达真情实感的方法。3、有感情地朗读课文,练习背诵。二、能力目标在理解课文的过程中培养学生的阅读分析能力、口头表达能力、思维想象力。三、德育目标懂得老麻雀奋不顾身掩护小麻雀那种“强大的力量”就是爱的力量。四、教学重点1、抓住描写小麻雀、猎狗、老麻雀的神态、动力的句子,体会三者的特点,进一步感受爱是一种强大力量。五、教学难点1、体会第4、5自然段中描写老麻雀神态、动作的句子所表达的思想感情,即“一种强大的力量”就是爱的力量。
五、说教学过程:(一)课题导入。 以故事发生的背景导入,激发学生的阅读兴趣。 板书课题时,自然地指导生字“豹”的书写,加深学生的印象。(二)初读感知。 给学生充足的时间自主探究,让他们自由朗读课文,要求:读准字音,读通课文,遇到生字较多或难读的地方多读几遍。 我再利用多媒体检查自学情况。课件出示生字词检查认读,抽查朗读。对易读错、写错的字让学生交流讨论识字方法,帮助识记。对难读的句子,交流朗读方法和要点,学生进行展示读。 引导性提问:西门豹来到邺县,做了几件事?哪几件事?让学生整体感知文章内容。 以西门豹做的三件事为线索,让学生理清文章脉络,分清层次,概括内容。为后面对课文的复述做铺垫。
这篇文章的编排价值,不光体现了它的人文性,知识性,更多的还是作为提升学生语文素养,发展学生的阅读能力的载体。这篇文章的语言很生动,很有特色,尤其是描述“我”被鹅追赶的一次经历中,作者将鹅的神气十足、胆大妄为,以及“我”的狼狈不堪、慌忙逃窜,全都通过人物的语言、动作、神态、心理活动的细致刻画,以及对鹅的动作的传神描写,活灵活现地展示在读者面前。因此,本课的可读性非常强,课上,应引导学生进行充分的感情朗读,积累优美、生动的语句,使学生在读中思,读中想象画面、场景,在思中悟,感悟作者的表达、遣词造句的准确生动,以及作者用生动的故事为依托,阐释深刻的道理的写作方法。二、 学情分析1、进入五年级下册,学生已具有了一定独立阅读能力,在阅读实践中能运用一些阅读的技能进行个性化的阅读。在以往的课堂教学中学生的自读,自悟、勾画、批注、交流、评价的阅读方法有一定的积淀,这节课给学生提供了一个进行阅读实践的更好历练机会。2、针对这篇文章来说,虽然故事的确是浅现生动的,但文章并没有具体阐释出作者要表达的意图,并没有对故事进行太多的分析,也没有直接揭示出道理,学生必须联系上下文,找到重点关键的、含义深刻语言文字中作对比分析,透过现象看本质。这对于小学生来说理解起来有一定的难度。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。