对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
课前小测1.思考辨析(1)若Sn为等差数列{an}的前n项和,则数列Snn也是等差数列.( )(2)若a1>0,d<0,则等差数列中所有正项之和最大.( )(3)在等差数列中,Sn是其前n项和,则有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在项数为2n+1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故选B项.]3.等差数列{an}中,S2=4,S4=9,则S6=________.15 [由S2,S4-S2,S6-S4成等差数列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时,n为________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有负项的和最小,即n=23或24.]二、典例解析例8.某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多两个座位. 问第1排应安排多少个座位?分析:将第1排到第20排的座位数依次排成一列,构成数列{an} ,设数列{an} 的前n项和为S_n。
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
10.阅读材料,回答问题。材料一:近年来,公路上经常出现“路怒族” ,只要看到别人抢道、开车慢、不让道等他们就会 骂人,而且骂得很难听,甚至大打出手。材料二:在新型冠状病毒肺炎疫情防控期间,2020年2月1 日贵州省贵阳市的某商场,一位打扮靓 丽的年轻女子要进入商场时不戴口罩,被商场门口执勤的店员劝阻,要求戴上口罩才能进入商场,该 女子不但不听劝告,而是嗤鼻一笑,不以为然。随后就绕开工作人员打算进入商场,4名工作人员随 后上前阻止,该女子竟然要强行闯入商场,甚至对商场工作人员拳脚相加,随后商场工作人员报警。(1) 结合材料说说,情绪受哪些因素的影响?(2) 根据材料谈谈在生活中如何管理愤怒?11.【东东的日记】下面是东东的“微日记”片段,记录着成长的点滴,与你分享。
①坚持依法行政,维护公平正义②严格遵循诉讼程序,加强立法③司法过程和结果都要合法、公正④坚持以事实为根据,以法律为准绳A.②④ B.②③ C.③④ D.①②3.疫情防控期间,某地检察院充分发挥检察职能,与公安机关等部门加强协作, 提前介入涉疫案件侦查,切实保障人民群众合法权益,全力维护疫情期间社会稳 定。由此可见 ( )①人民检察院是我国的法律监督机关②公安机关是我国的审判机关③公平正义需要法治的保障④人民检察院接受政府的领导和约束A.①② B.①③ C.②③ D.②④(二) 非选择题4. 探究与分享:结合所学知识,与同学讨论探究,回答下列问题。案例反思:2017 年 4 月 20 日,最高人民法院、中央电视台联合公布 2016 年推动法治进程十大案件评选结果,聂某被宣判无罪案等十大案件入选。1995 年 3 月,石家庄中院一审判处聂某死刑,同时判处赔偿受害人家属丧葬费等计 2000 元。1995 年 4 月 27 日,聂某被执行死刑。2016 年 12 月 2 日,最高人民法 院第二巡回法庭宣告撤销原审判决,改判聂某无罪。2017 年 3 月,聂某家属获 268.13991 万元国家赔偿。思考:如何才能避免这种错案的发生?
二是提速高技能人才培养。推进**艺才高级技工学校打造我区首个技师学院,推动建立*个新职业培训示范基地、*个技能大师工作室、*个“巴渝工匠”乡村驿站,新增*家以上企业自主评价机构,提升技能人才培养层次。力争到2024年底,全区技能人才总量达到**万人,高技能人才总量达到**万人。三是优化人才招聘选拔机制。有序实施全区部门下属事业单位年度招聘工作,开展教育、卫生事业单位赴高校招聘应届优秀大学毕业生,规范开展基层医疗卫生机构考核招聘,进一步做好评比达标表彰工作和创建示范活动,充分发挥表彰激励作用。四是健全联系服务专家制度。坚持把搭建事业平台、发挥专家作用作为联系服务的重点,为专家创新创业提供良好条件,组织开展区内专家休假、疗养、学术交流“三位一体”活动,探索“学养结合”服务模式,打造各领域高层次人才交流互动平台。
二是提速高技能人才培养。推进XX艺才高级技工学校打造我区首个技师学院,推动建立X个新职业培训示范基地、X个技能大师工作室、X个“巴渝工匠”乡村驿站,新增X家以上企业自主评价机构,提升技能人才培养层次。力争到2024年底,全区技能人才总量达到XX万人,高技能人才总量达到XX万人。三是优化人才招聘选拔机制。有序实施全区部门下属事业单位年度招聘工作,开展教育、卫生事业单位赴高校招聘应届优秀大学毕业生,规范开展基层医疗卫生机构考核招聘,进一步做好评比达标表彰工作和创建示范活动,充分发挥表彰激励作用。四是健全联系服务专家制度。坚持把搭建事业平台、发挥专家作用作为联系服务的重点,为专家创新创业提供良好条件,组织开展区内专家休假、疗养、学术交流“三位一体”活动,探索“学养结合”服务模式,打造各领域高层次人才交流互动平台。
激发院企合作潜力,推动合作研发技术攻关。增强科技供给服务能力,瞄准产业走向和企业需求,征集多个项目技术难题,向各大高校和科研院所推荐发布,同时将高校、院所可供产业化的科技成果向全区工业企业发布,促进院企双向合作。如**公司与金属研究所合作研究项目“含砷含硫难浸金矿的强化碱提金工艺”、**公司与合肥物质科学研究院合作项目“集装化货物智能装卸系统”及“中车样机试制”、**公司与过程工程研究所合作项目“高温加压解热过程有机组分定向反应转化装置及方法实施许可”、**公司与过程研究所合作“高效复合铜基催化剂一步法规模化制备技术的开发”等项目,均取得良好效果。
人大代表由人民选举产生,对人民负责,受人民监督,这是宪法和法律明文规定的。目前,全市有各级人大代表近X名,来自方方面面、各行各业,具有联系群众密切、接触群众广泛、沟通群众方便等优势,是推进全市改革发展、维护社会和谐稳定的一支重要力量,也是群众路线的积极拥护者和模范践行者。因此,我们要把践行群众路线与人大代表依法履职有机地结合起来。
(一)人才是区域竞争的关键因素。当今时代,以经济实力和科技实力为基础的区域竞争越来越激烈。区域竞争说到底是人才竞争。人才优势是最需培育、最有潜力、最可依靠的优势,谁拥有了人才竞争优势,谁就赢得了区域竞争的主动权,谁就抢占了科学发展的制高点。所有经济强盛国家和地区的发展都证明了这一点。从国外看,世界各国特别是美国、日本、德国、新加坡等发达国家十分重视人才,对人才的争夺战愈演愈烈。他们凭借雄厚的经济实力和优越的科研条件,千方百计吸引人才。我国每年都有成千上万的大学毕业生出国留学,无论是公费还是自费,学成归国没有多少。很多人才就这样流失了。从国内看,作为全国经济发展龙头的南方地区,正在展开新一轮的招才引智的竞争。无锡市是国家级人才改革试验区,一个千人计划专家落地就能拿到680万元的现金奖励,一个团队的引进费用就是几千万,甚至上亿元。与我县在产学研方面一直有合作的XX大学XXX学者XXX教授,XX曾提出给他一个省级实验室外加每年XXX万元科研经费,他都不为所动,他们这个层次缺的不是钱,而是如何成就自己的事业。由此可见,现在各地都高度重视人才工作。对人才的竞争,已经出现了类似前些年招商引资的情景。在去年的全省人才工作会议上,人社部一位领导曾讲过,“现在已经有人提出,国家要出台规定,防止像前些年招商引资那样出现对人才的不惜代价、竞相抬价的恶性竞争”。
一、更大力度做好“谋”的文章,让储备项目“多”起来。 一是聚焦“十四五”发展谋项目。坚持总量与质量并重、产业与基建并重、政府投资与社会投资并重,谋划“十四五”项目×个,计划总投资×亿元。 二是聚焦对上争取谋项目。加强积极对接中央支持湖北一揽子政策,围绕新基建、科技创新、生态保护等重点领域,共争取上级资金×亿元。10家企业获得一年财政贴息专项再贷款×亿元。 三是聚焦产业发展谋项目。紧盯汽车产业、临空经济、新能源新材料等重点产业,谋划打基础、强支撑的重大产业项目136个。
一、要认真践行群众路线,依法履行代表职责人大代表由人民选举产生,对人民负责,受人民监督,这是宪法和法律明文规定的。目前,全市有各级人大代表近X名,来自方方面面、各行各业,具有联系群众密切、接触群众广泛、沟通群众方便等优势,是推进全市改革发展、维护社会和谐稳定的一支重要力量,也是群众路线的积极拥护者和模范践行者。因此,我们要把践行群众路线与人大代表依法履职有机地结合起来。
(二)激发院企合作潜力,推动合作研发技术攻关。增强科技供给服务能力,瞄准产业走向和企业需求,征集多个项目技术难题,向各大高校和科研院所推荐发布,同时将高校、院所可供产业化的科技成果向全区工业企业发布,促进院企双向合作。如××××公司与金属研究所合作研究项目“含砷含硫难浸金矿的强化碱提金工艺”、××××公司与*物质科学研究院合作项目“集装化货物智能装卸系统”及“中车样机试制”、××××公司与过程工程研究所合作项目“高温加压解热过程有机组分定向反应转化装置及方法实施许可”、××××公司与过程研究所合作“高效复合铜基催化剂一步法规模化制备技术的开发”等项目,均取得良好效果。
自打我上小学,妈妈就让我养成坚强、独立的性格,自己的事自己做。 那是一个飘着毛毛细雨的早晨,我早早地出门去买早餐。对于平常吃惯了面包牛奶的妈妈,我多么想给她一个惊喜——为她买一碗热腾腾的面。我买完面便匆匆往回赶。 我小跑着上楼,希望快点把这个惊喜带给妈妈。突然,我的脚下打了个滑,不但我自己摔了个狗啃泥,而且连滚烫的面也泼洒了我一手。我被烫得哇哇大哭,哭声引来了妈妈,我哭丧着脸对妈妈诉苦,满以为会得到一点同情与怜爱,可妈妈只是简单地交代了几句,便又递给我钱,让我重新去买一份。我大为震惊:妈妈怎么那么狠心呀?何况我又是个女孩,她居然都不安慰我一下,我到底是不是她亲生的?我忍着疼痛和怒火接过妈妈给我的钱,又去买了一碗面。
随着生活水平的不断提高,自行车、电动车、摩托车、汽车已经慢慢的进入了我们的身边,但同时危险也在慢慢的逼近我们。同时死亡的脚步也在一点一点的向我们移动。同学们你们看,一次又一次的车祸发生了,它无情的吞噬着人类的生命,它在吞噬着人类生命的过程中同时也让许多的家庭支离破碎。同学们,你们想过吗?当你们闯红灯时、当你们和你们的小伙伴们在马路上追逐打闹时,死神已经在向你们招手了。所以我想再一次呼吁:“安全出行,文明出行!”