提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

北师大初中七年级数学下册多项式除以单项式教案

  • 领导在开业仪式庆典上的讲话稿

    领导在开业仪式庆典上的讲话稿

    大全集团作为工程电气、新能源、交通技术三大产业领域的领先制造商,拥有百亿资产的多元化、国际化、品牌化企业集团,近年来致力于发展光伏产业,自20**年投资建设多晶硅项目以来,就已把万州作为发展光伏产业的战略基地。目前多晶硅项目达到年产4000吨的规模,技术层次、产品质量、运营效益、环保水平国内领先、国际一流。今年5月,重庆大全太阳能有限公司注册成立,计划投资30亿元,建设1000兆瓦硅片项目,一期250兆瓦年内建成投产。整个项目达产后,不仅年销售收入将达到100亿元,可提供4000个就业岗位,更重要的是,将使大全在光伏领域的竞争力得到极大提高,一举占据新能源产业的制高点!

  • 领导在公路通车仪式上的讲话

    领导在公路通车仪式上的讲话

    建设大运高速公路是我省改变交通状况、推进经济结构调整、加快经济社会发展的重大举措。山西地处内陆,山区丘陵占到总面积的80%以上。优化省内交通,打通出省通道,进而走向全国、走向世界,是全省人民的梦想和夙愿。历届省委、省政府都为全省公路交通建设作出了不懈的努力。特别是改革开放和社会主义市场经济的深入推进,国家坚持扩大内需的方针和实施积极的财政政策,给我省公路建设提出了新的要求,带来了良好机遇。大运高速公路穿越全省产业集中区、资源富集区、经济发达区、重要旅游区和人口稠密区,对全省改革开放和现代化建设具有重大战略意义。

  • 毕业典礼暨成人仪式上的讲话

    毕业典礼暨成人仪式上的讲话

    首先,非常高兴、也非常欢迎各位家长来校参加今天的活动。你们含辛茹苦、倾注心血、倾其所有地养育孩子。我知道,此刻,作为父母,你们的内心会有诸多的感慨,酸甜苦辣挥不去,百般滋味上心头,但更多的一定是满满的骄傲、甜甜的幸福和殷殷的期许!XX中学感谢全体家长三年来对学校工作的信任、理解和支持。因为有你们,我们的学生才得以无忧成长、走向优秀;因为有你们,XX中学才得以不断发展、品质提升。我提议,让我们用热烈的掌声向家长朋友们表示诚挚的欢迎和衷心的感谢!

  • 公路改造工程开工仪式上的讲话

    公路改造工程开工仪式上的讲话

    当前,我市上下正紧紧围绕“全面领先苏中、抢先跨过长江、率先实现小康,争当苏中第一强市”的“三先一争”奋斗目标,大力实施“工业化、国际化、城市化,建设社会主义新农村”的“三化一新”发展战略,各项工作正在如火如荼的进行之中。中共__市第十二次代表大会提出要精心构筑两大经济带,其中重要的一环就是要大力度整合沿路资源,充分发挥大交通的优势,实现人流、物流、信息流的快速顺畅流动,催生一批项目群,促进沿线乡镇产业的合理布局和快速发展,使高等级公路沿线成为我市中部工业经济新的集聚带。随着__公路拓宽改造工程的开工,我们坚信,中部经济带一定会强势崛起,一定会成为__经济社会发展的重要一极。

  • 国际计算机软件许可合同格式

    国际计算机软件许可合同格式

    本合同是由以下双方于 年 月 日签订的:中国 是根据中华人民共和国法律正式成立并注册的企业法人(简称“买方”); 国 公司(简称“卖方”)。 鉴于卖方多年来从事 系统的设计、生产、销售业务并为该系统提供服务,并在进一步开发; 鉴于买方愿意建立一个 系统; 鉴于引进 系统将会提高科学技术水平,改进 的质量和类型,在先进技术产品的使用及服务方面提供培训机会,并且通过创造一种平等、积极的工作环境促进工人的权利和尊严,从而对中国人民做出贡献;鉴于按照平等互利的原则,经友好协商,买方已决定它愿成为 系统的使用人,而卖方愿意提供该等系统供买方使用。 因此,考虑到本合同中所含的相互条款和协议,现双方特协议如下: 1.双方间的协议(简称“合同”)由本合同所规定的条款和条件以及以下所提及的附件构成: 附件一  系统组件 附件二  交货和安装时间表 附件三  价格和支付条件 附件四  产品说明和规格 附件五  卖方软件许可合同 附件六  软件分许可合同 附件七  租赁合同

  •  国际计算机软件许可合同格式

    国际计算机软件许可合同格式

    本合同是由以下双方于 年 月 日签订的:中国 是根据 中华人民共和国法律正式成立并注册的企业法人(简称“买方”); 国 公司(简称“卖方”)。 鉴于卖方多年来从事 系统的设计、生产、销售业务并为该系统提供服务,并在进一步开发; 鉴于买方愿意建立一个 系统; 鉴于引进 系统将会提高科学技术水平,改进 的质量和类型,在先进技术产品的使用及服务方面提供培训机会,并且通过创造一种平等、积极的工作环境促进工人的权利和尊严,从而对中国人民做出贡献;鉴于按照平等互利的原则,经友好协商,买方已决定它愿成为 系统的使用人,而卖方愿意提供该等系统供买方使用。 因此,考虑到本合同中所含的相互条款和协议,现双方特协议如下: 1.双方间的协议(简称“合同”)由本合同所规定的条款和条件以及以下所提及的附件构成: 附件一  系统组件 附件二  交货和安装时间表 附件三  价格和支付条件 附件四  产品说明和规格 附件五  卖方软件许可合同 附件六  软件分许可合同 附件七  租赁合同

  • 国际计算机软件许可合同格式

    国际计算机软件许可合同格式

    本合同是由以下双方于 年 月 日签订的:中国 是根据中华人民共和国法律正式成立并注册的企业法人(简称“买方”); 国 公司(简称“卖方”)。 鉴于卖方多年来从事 系统的设计、生产、销售业务并为该系统提供服务,并在进一步开发; 鉴于买方愿意建立一个 系统; 鉴于引进 系统将会提高科学技术水平,改进 的质量和类型,在先进技术产品的使用及服务方面提供培训机会,并且通过创造一种平等、积极的工作环境促进工人的权利和尊严,从而对中国人民做出贡献;鉴于按照平等互利的原则,经友好协商,买方已决定它愿成为 系统的使用人,而卖方愿意提供该等系统供买方使用。

  • 空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.

  • 倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    (2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 大班科学教案:物体是如何向下落的

    大班科学教案:物体是如何向下落的

    一、 引题 秋天到了,一片片树叶落下来,树叶落下来是怎么样的?(幼儿自由讲述) 二、 幼儿探索并讨论。 1、幼儿猜想并尝试:你桌上东西落下是怎么样的?每一样东西都试一试。 2、引导幼儿和同伴比较,发现物体下落时的异同。 “请你找一个好朋友比一比,看看你们手里的东西落下来有什么不一样?” 3、幼儿交流:(1)你有什么发现吗?(幼儿自由交流) (2)为什么有的物体落的快,有的物体落的慢? 4、小结:所有的物体都会下落的,不同物体下落的速度有快有慢。 5、师演示一张皱纸和一块积木,引导幼儿观察,发现物体下落路线是不一样的。

  • 幼儿园中班数学教案:小动物住新家

    幼儿园中班数学教案:小动物住新家

    2、运用目测数群再接着数完全部的方法,正确判断7以内的数量。   3、能学习别人的好方法,乐意使用新的方法数数。活动准备:  1、经验准备:幼儿已经认识了数字1——7。   2、物质准备:   教具:房屋形分类底版,7以内的动物卡片若干。   学具:房屋形分类底版,7以内的动物卡人手一套,数字卡片1——7人手一套。   环境:在黑板上创设动物园的环境,并在每个区域贴上数字。  活动过程: 1、游戏:参观动物园。复习认识数字1——7。   师:今天,老师带你们到动物园去玩,好吗?(出示黑板)看,动物园里有几个房间呀?这是几号房间呢?(引导幼儿复习认读数字。)  2、游戏:和动物做朋友。学习运用目测数群再接着数完全部的方法,正确感知7以内的数量。

  • 中班数学教案:长短宽窄厚薄排序

    中班数学教案:长短宽窄厚薄排序

    2.让幼儿学习按照长短、宽窄、厚薄的差异进行正逆排序,初步体验序列中物体的相对性和可变性。 3.鼓励幼儿完成多种活动内容,并大胆讲述操作过程和操作结果。活动准备 宽窄的纸条若干(同颜色、同长度;同颜色、不同长度);按长短、宽窄、厚薄、高矮、大小、多少等差异排序好的材料纸各一张

  • 关于学习贵在持之以恒的国旗下讲话

    关于学习贵在持之以恒的国旗下讲话

    学习贵在持之以恒不少同学知道,学习很重要,但学习累了,作业多了,就失去了学习的兴趣,就变得懒惰了,成绩自然下滑。其实究其根本,是缺乏学习的毅力,缺乏持之以恒的精神。“持之以恒,金石可镂”,任何巧妙的办法如果没有恒心没有坚持,那么最终都将沦为过眼云烟,不会对我们的学习起到多少推动作用。而如果我们选定了一个好办法,坚持下去,就会看到自己的成绩得到变化。学习是慢的艺术,更需要我们沉下心来,去认真研究,需要我们有坚持的精神。正如拿破仑曾说过:“胜利将由最有耐力的人获得。”翻开辉煌的历史篇章,《史记》这部鸿篇巨著被世人称之“史家之绝唱,无韵之离骚”。它的研究价值无书可及,可你知道,这是司马迁耗费了17年的时间,不顾宫刑的折磨,呕心沥血的杰作,更有李白铁杵成针,屈原洞中苦读,匡衡凿壁借光,孙康囊萤映雪,他们的精神印证了“贵有恒,何必三更起五更睡,最无益,只怕一日曝十日寒”的道理。

  • 高中教师个人教学工作计划5篇

    高中教师个人教学工作计划5篇

    二、学情分析  在校领导的正确领导下,本学期我校生源比去年有了重大的变化.高一年级招收了400多名新生,学校带来了新的希望.然而,我清醒地认识到任重而道远的现实是,我校实验班分数线仅为140分,普通班入学成绩仍居附近各中学之末.要实现我校教学质量的根本性进步,非一朝一夕之功.实验班的教学当然是重中之重,而普通班又绝不能一弃了之.现在的学情与现实决定了并不是付出十分努力就一定有十分收获.但教师的责任与职业道德时刻提醒我,没有付出一定是没有收获的.作为新时代的教师,只有付出百倍的努力,苦干加巧干,才能对得起良心,对得起人民群众的期望.

上一页123...309310311312313314315316317318319320下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。