2、通过儿歌,懂得要关心老人,要对老人有礼貌。准备:1、课前帮助幼儿了解一些有关重阳节的知识。2、爷爷奶奶笑哈哈的图片。过程:一、导入:(出示图片)引起幼儿的兴趣。师:图上有谁呀?(爷爷奶奶)他们怎么啦?(他们笑了)师:他们为什么笑呢?(请小朋友说一说)师:原来他们要过节了,所以笑得那么开心。
活动目标: 1、能根据笑和哭的表情图进行大胆想象,发展幼儿的发展思维。 2、认识汉字:笑、哭。 3、能用较连贯的语言表达自己的心情体验。活动准备:“笑”、“哭”的表情图各一幅;笑哭的录音、幼儿人手两张字卡。活动过程: 一、游戏:谁来了师:今天老师带来了两位小客人,你们想不想知道谁来了呀?二、观察笑和哭的两张不同的表情图 师:笑 “这是谁?他在干嘛?”“他笑得怎么样?”“他的眼睛,嘴巴是什么样子的?像什么?”“你会笑吗?”“笑一个给大家看看。 师:“笑的时候发出什么声音?”“猜一猜他为什么笑?”“那你在什么时候会笑呢?” 师:哭 “他怎么了?”“他哭起来是什么样子的呢?”“你哭的时候是什么样?”他为什么会哭呢?““你什么时候会哭呢?” 师:“你们喜欢什么表情?”“为什么?”
2、在轻松愉快的气氛中,锻炼语言表达能力和思维能力。活动准备:1、实物投影仪,电视机。2、有活泼轻快音乐的磁带一盘,录音机一台。3画有鸟飞、鱼游、兔跳、鹿跑的图片一张。4、会飞、游、跳、跑的动物头饰三十只,大字卡:飞、游、跳、跑。活动过程:1、以妈妈带宝宝游戏的形式,在音乐声中做鸟飞、鱼游、兔跳、鹿跑的动作。边学边引导幼儿说“拍拍翅膀飞呀飞”,“摇摇尾巴游游游”,“竖起耳朵蹦蹦跳”,“四条腿儿跑跑跑”。
活动准备: 人物贴绒两个、卫生小卡四张、音乐、录音机 活动重点: 培养幼儿积极观察表达的能力,有说的愿望。 活动过程:1、以介绍新朋友给大家认识引出主题。2、认识红红 (1)介绍红红 (2)向红红问好,幼儿自我介绍。 (3)观察红红,说说喜欢红红吗?为什么? (4)介绍红红自己会做的事。说说红红会做的事。 (5)表达自己愿意与红红交朋友的愿望想法。
[活动准备]1、节奏卡片。2、蜜蜂、蝴蝶、蜻蜓、萤火虫的图片。3、课件:蜜蜂、蝴蝶、蜻蜓、萤火虫的本领和生活习性。 [活动过程]1、游戏《小蜂窝》。问:是谁飞走了?答:蜜蜂。瞧!蜜蜂又飞来了。2、出示节奏卡片,引导幼儿按节奏拍手。出示四种飞虫的图片,引导幼儿按语言节奏说出:x x飞来了,欢迎x x的句子。3、创设情景,理解诗歌内容。请小朋友说说都有谁?它们都有什么样的本领和特点。通过幼儿讨论,教师总结四这种昆虫的本领。让我们一块来看看我们说的对不对。引导幼儿观看课件。
活动目标:1、理解故事内容,能用连贯语言表达动物间的对话,并学习词:顶、避雨。2、感受帮助别人和被别人帮助的快乐情感。活动准备: 故事课件包括雨伞范例、人手一张纸、动物图片活动难点: 理解故事内容,说出小兔是用什么避雨的,它是怎样帮助小动物的。学说故事中的对话。 活动过程:一、演示课件巩固春天的特征,引起幼儿的兴趣1、哇,这么漂亮的图片啊,你看到了什么?猜一猜图片上是什么季节呢?2、春天的天气真舒服,可是春天也会下雨,下雨了我们是怎么避雨的呢?要用到什么呢?(可以鼓励幼儿发散性的思维)3、我们小朋友可以用雨伞,可是小白兔怎么办呀?请小朋友听一听小兔想了个什么办法?(请幼儿带着最有一个问题安静的倾听故事)
我今天讲话的主题是“共建文明校园,共创文明之风”。文明,就是为维系社会正常生活,要求人们共同遵守的最基本的道德规范。换句话说,文明是一个人的立身处世之本。一直以来,“不说脏话”“遵规守纪”“尊重师长”“乐于助人”“文明就餐”“环境卫生”“爱护公物”“穿着校服”被学校反复倡导,文明校园的观念逐渐深入人心。 那么,什么是文明校园呢?从全校出发,全校讲文明,可以通过我们的力量促进社会和谐;从年级出发,全年级讲文明,就是我们年级在学校中的形象体现;从个人出发,这体现了我们尊重、理解、谦让、善良等品质。 文明意义何在?对个人而言,文明与否体现一个人的素质水平,为人文明可以品味君子之乐,获取他人尊重,成就自己,成就学业;对校园而言,文明校园能使校园氛围和谐;对社会而言,文明更是蕴藏在众人心中的精神伟力。“在文明的路上,没有人能置身事外”,很多时候,能不能、会不会对不文明行为说不,考验个人的文明素养,反映社会的文明水平。 从古至今,不乏有崇尚校园文明、践行校园文明的典范。杏坛讲学孔子三千弟子七十二贤人克己复礼、见贤思齐是尊崇校园文明的佳话;宋代大儒程门立雪是尊师重道的榜样;毛泽东同志在湖南省立第一师范学校读书时与同学们一起创立《湘江评论》,以勇立时代潮头,引领时代和改造世界为己任,更是青少年的楷模。由此可见,小到教室的清洁、求学交友,大到修身齐家治国平天下,都是校园文明不可或缺的一部分。唯有把校园文明内化于心,外化于行,才造就了一个和谐的校园、社会、国家乃至世界。
四是多措并举,产业发展尽全力。始终把产业振兴作为帮扶工作重点,帮扶之初,引导驻村工作队积极通过实地调研、培训学习等方式,组织村“两委”、产业发展能人等,集中学习产业发展相关政策、技能,外出到周边产业发展示范村等地参观学习取经,让村“两委”干部学习到先进的生产技术和管理经验,帮助他们开拓眼界、打开思路、提升技能,结合村情实际及时制定产业发展规划,最终经过多方考量、征求意见,确定以种植大棚蔬菜、精品水果和油茶等经济作物的产业发展思路。同时,还组织园林维护干部到帮扶村宣传常见病虫害及防治知识,传授种植和修剪技能,帮助提升技能技术,高效发展产业,通过签订分红合同等方式,引导企业、合作社与农户建立“风险共担、农企双赢”的利益联结机制,促进农户共享稳定收益,实现集体增收、群众致富。截至目前,共争取到项目资金、物资xx余万元,帮助发展蔬菜等xx余亩,仅2024年上半年实现销售收入xx余万元,覆盖带动全村xx户脱贫户稳定增收。
活动目标: ◇ 愿意跟着老师一起进行10以内的唱数活动。 ◇ 能按正确的顺序唱数1-10。 ◇ 能合着身体动作有节拍地唱数。 活动准备: ◇ 学具:小矮人指偶,卡纸制作的10步阶梯。 活动过程: ◇ 游戏:小矮人上楼梯 1.老师操作纸偶讲故事: 小矮人很想爬到高高的楼梯上去玩玩,看看上面有什么。小矮人一边爬楼梯一边有节奏地唱数:1 2 3 4 5, 6 7 8 9 10。小矮人爬到了10步高的楼梯上,他高兴得跳呀跳,向小朋友们挥挥手。
各位老师、各位同学:星期一早上好!再过几天就是“六一”国际儿童节了,首先,我预祝同学们节日愉快!每当“六一”儿童节的时候,同学们都兴高采烈地欢度着自己的节日。那一张张笑脸,一阵阵歌声,都充满了幸福和快乐。但是你是否知道这“六一”节的来历?是否知道当年确定儿童节的时候,是因为世界上有无数的少年儿童在战争中被夺去了幼小的生命。那是在第二次世界大战期间,1942年6月,德国法西斯枪杀了捷克的一个名叫利迪策村的16岁以上的男性公民140余人和全部婴儿,并把妇女和90名儿童押往集中营。村里的房舍、建筑物均被烧毁,好端端的一个村庄就这样被德国法西斯给毁了。为了悼念利迪策村和全世界所有在法西斯侵略战争中死难的儿童,反对帝国主义战争贩子虐杀和毒害儿童,保障儿童权利,1949年11月国际民主妇女联合会在莫斯科召开执委会,正式决定每年6月1日为全世界少年儿童的节日,即国际儿童节。
所属单位机关部门D组织ZT教育可以适当错后启动,拉开时间梯次,但也不能与上级单位间隔时间过长,最晚5月5日前要全面启动。需要强调的是,不管什么时间启动,具体到每个单位、部门,开展ZT教育的时间都不能少于5个月。无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。
无论采取哪种方式启动,都要讲清这次ZT教育的重大意义、目标要求、工作安排等。总公司机关各部门、所属各单位、各化工公司要将启动方案报巡回指导组审阅把关,巡回指导组还要现场参加指导各部门、各单位的启动工作。三、高水平进行ZT教育督促指导。强有力的督促指导是搞好ZT教育的重要保证,要把严督实导贯穿指导开展ZT教育全过程。按照D中央要求,总公司所属各单位不再派出指导组。这对总公司巡回指导组来说,担子更重了,既要直接指导所属各单位和化工公司本级D委,又要延伸指导所属单位机关部门、直属单位D组织。要把准巡回指导工作定位,切实尊重各单位D委主体地位,紧紧依靠他们开展工作,既指出存在问题又要帮助研究对策,真正实现同题共答。
守护幸福不打烊...... 各位老师、同学:大家好!今天,我讲话的题目是《做一个诚信的人》。有这样一个故事:美国一位的心理学家为了研究母亲对人一生的影响时收到两封信,一封来自白宫一位人士,一封来自监狱一位服刑的犯人。他们谈的都是同一件事:小时候母亲给他们分苹果。那位来自监狱的犯人在信中这样写道:小时候,有一天,妈妈拿来几个苹果,红红的,大小各不同。我一眼就看见中间的一个又红又大,十分喜欢,非常想要。这时,妈妈把苹果放在桌上,问我和弟弟:你们想要哪个?我刚想说想要最红的一个,这时弟弟抢先说出我想说的话。妈妈听了,瞪了他一眼,责备他说:好孩子要学会把好东西让给别人,不能总想着自己。于是,我灵机一动,改口说:“妈妈,我想要那个最小的,把大的留给弟弟吧。“妈妈听了,非常高兴,在我的脸上亲了一下,并把那个又红又大的苹果奖励给我。我得到了我想要的东西,从此,我学会了说谎。以后,我又学会了打架、偷、抢,为了得到想要得到的东西,我不择手段。直到现在,我被送进监狱。
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。