授课 日期 班级16高造价 课题: §10.1 计数原理 教学目的要求: 1.掌握分类计数原理与分步计数原理的概念和区别; 2.能利用两个原理分析和解决一些简单的应用问题; 3.通过对一些应用问题的分析,培养自己的归纳概括和逻辑判断能力. 教学重点、难点: 两个原理的概念与区别 授课方法: 任务驱动法 小组合作学习法 教学参考及教具(含多媒体教学设备): 《单招教学大纲》、课件 授课执行情况及分析: 板书设计或授课提纲 §10.1 计数原理 1、加法原理 2、乘法原理 3、两个原理的区别
新知探究我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数” 。类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究的?1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭.”如果把“一尺之锤”的长度看成单位“1”,那么从第1天开始,每天得到的“锤”的长度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在营养和生存空间没有限制的情况下,某种细菌每20 min 就通过分裂繁殖一代,那么一个这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是2,4,8,16,32,64,… ⑤4.某人存入银行a元,存期为5年,年利率为 r ,那么按照复利,他5年内每年末得到的本利和分别是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
求函数的导数的策略(1)先区分函数的运算特点,即函数的和、差、积、商,再根据导数的运算法则求导数;(2)对于三个以上函数的积、商的导数,依次转化为“两个”函数的积、商的导数计算.跟踪训练1 求下列函数的导数:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟踪训练2 求下列函数的导数(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的饮用水通常是经过净化的,随着水的纯净度的提高,所需进化费用不断增加,已知将1t水进化到纯净度为x%所需费用(单位:元),为c(x)=5284/(100-x) (80<x<100)求进化到下列纯净度时,所需进化费用的瞬时变化率:(1) 90% ;(2) 98%解:净化费用的瞬时变化率就是净化费用函数的导数;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
由样本相关系数??≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同.归纳总结1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著.例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
新知探究国际象棋起源于古代印度.相传国王要奖赏国际象棋的发明者,问他想要什么.发明者说:“请在棋盘的第1个格子里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放上4颗麦粒,依次类推,每个格子里放的麦粒都是前一个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同意了.假定千粒麦粒的质量为40克,据查,2016--2017年度世界年度小麦产量约为7.5亿吨,根据以上数据,判断国王是否能实现他的诺言.问题1:每个格子里放的麦粒数可以构成一个数列,请判断分析这个数列是否是等比数列?并写出这个等比数列的通项公式.是等比数列,首项是1,公比是2,共64项. 通项公式为〖a_n=2〗^(n-1)问题2:请将发明者的要求表述成数学问题.
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
1.判断正误(正确的打“√”,错误的打“×”)(1)函数f (x)在区间(a,b)上都有f ′(x)<0,则函数f (x)在这个区间上单调递减. ( )(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”. ( )(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.( )(4)判断函数单调性时,在区间内的个别点f ′(x)=0,不影响函数在此区间的单调性.( )[解析] (1)√ 函数f (x)在区间(a,b)上都有f ′(x)<0,所以函数f (x)在这个区间上单调递减,故正确.(2)× 切线的“陡峭”程度与|f ′(x)|的大小有关,故错误.(3)√ 函数在某个区间上变化的快慢,和函数导数的绝对值大小一致.(4)√ 若f ′(x)≥0(≤0),则函数f (x)在区间内单调递增(减),故f ′(x)=0不影响函数单调性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用导数判断下列函数的单调性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因为f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函数在R上单调递增,如图(1)所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
①谈话引入:“小朋友们喜爱的小动物还有很多很多呢,你们能给其他动物编上歌词并说出来吗?”让我们来当“小小作词家吧”。 ②鼓励学生进行创编。 ③选择几种,跟着音乐一起唱。 (培养学生的音乐创造能力,同时引导学生要关于观察、关于模仿,通过模仿,由易到难、循序渐进地进行创造。 4、小结 师:动物是人类的朋友,我们要保护动物,爱护动物。听着小朋友们美妙的歌声,看着大家亲密无间的合作,老师心里无比的高兴。同学们还可以把小动物们请到我们的歌曲中来,和他们成为好朋友,你们可真的很能干! 整个教学过程从一开始的律动,后来的模仿到创编和即兴表演,运用感知法、认知法、学唱法,让学生用有感情的演唱和肢体语言表达对小动物的喜爱之情。通过创编,培养合作精神和创新能力,获得成功的喜悦。使学生的演、唱、创新、合作能力得到很好的发展,并渗透了思想教育。
同时,要结合整改做好“预防文章”,突出抓早抓小,完善各项规章制度,把纪律挺在前面,强化制度的刚性约束,切实把专题学习贯彻新时代中国特色社会主义思想ZT教育的成果转化为指导工作实践的有力武器。三是严守纪律规矩,保持勤政廉洁。身边的反面典型就是最好的警示,大家要深刻汲取XX严重违纪违法案件教训,深刻认识到失责必问、问责必严已经成为常态。要坚决扛起全面从严治D的政治责任,严格落实“一岗双责”,营造风清气正的政治生态。要牢固树立法纪意识,严守政治纪律和政治规矩。要树立正确的权力观、政绩观、事业观,严把小事、守好小节,管好家人、树好家风,远离“圈子”、防止“围猎”,始终做到崇廉拒腐,干净做事。最后,希望XX班子团结带领XXD员干部群众坚持发展为先、实干为要,紧盯目标任务,奋力比学赶超,积极争先进位,有序推进年度各项工作,交出一份优异的答卷。
1、继承和发扬我组教师良好的师德修养、爱岗敬业的精神、良好的教风和教学研究的热情。在全组发扬团队意识、合作意识和竞争意识,构成浓厚的教研之风、互学之风、创新之风。 3、在学习、实践、研讨中更新教师的教学观念,探索,总结新课程的实践经验,进一步提升本组教师的教科研本事,组建一支适应新课标要求的数学教师队伍。 4、规范数学教学常规,教学质量再上新台阶。 5、加强优质课评比,挖掘骨干教员。
3、教科研领导小组要定期召开教科研工作会议,密切配合当前的家庭教育教学工作,以研究促教育教学,在教育教学中搞研究。4、教科研领导小组负责管理家长学校科研课题的申报、立项、科研课题的实施,中期评估及结题工作,对教科研课题的实施进行全程监控和指导,不断总结教科研实践的经验和教训,提高家庭教育的教科研水平,推动家长学校教学质量的全面提高。
二、组织机构: 为了加强对学校开展“千名教师访万家”活动的领导,学校成立活动领导小组。 组长:骆XX 副组长:杨XX、陈XX 成员:全校教师 三、家访内容: 、积极向学生家长宣传《中共中央、国务院关于进一步加强和改进未成年人思想道德建设的若干意见》和教育部新颁布的《中小学生守则》及《中小学生日常行为规范》及其它教育法律、法规和各项政策。 2、向家长全面客观地反映学生在校的表现,了解学生家庭教育情况,介绍正确的教育子女方法,配合家长有针对性地进行教育,并听取家长对学校教育的意见和建议,增强家长配合学校共同教育子女的责任感。 3、指导家长合理安排孩子的节、假日生活,加强对孩子的管理,教育孩子不进入网吧等未成年人不宜入内的场所,注意防火灾、防溺水、防触电、防盗窃、防中毒,确保孩子身心健康和生命安全。
(3)学生根据展示的作品,汇报设计过程。做完后,让学生说一说自己的设计过程。设计意图:通过画一画展示作品,让学生体会图形变化的多样性和趣味性。(三)、总结提升、质疑问难。通过本节课的探究,你一定收获颇丰,谁愿意告诉老师,这节课你的学习收获?设计意图:通过让学生小结这节课的知识点,巩固将图形放大或缩小的方法。(四)、课堂检测(课件出示)1、请说出下图的各个动物馆的位置。2、判断题:3、选择题:设计意图:通过课堂检测巩固学生对知识点的应用。(五)、课外拓展延伸。(1分钟)生活处处有数学,生活中也有很多图形的放大与缩小的现象,你能举出一些例子吗?(课件播放图形的放大与缩小现象的例子)设计意图:让学生意识到生活中处处有数学,发现数学的美。
0的书写有其规范的笔顺,对此学生在第一次书写时,要对学生说清楚0这个数字的启闭与收笔,要让每个学生清楚0在田字格中所占的位置,对个别学生不正确的书写要及时纠正。【设计意图】借助小白兔吃萝卜的有趣情境,用运动的观点,让学生直观形象地体会物体个数从有到无的变化过程,从中让学生知道“没有”可以用数字0表示,知道0所表示的物体个数比123.....要少。三全课总结让学生说一说:这节课你有什么收获?你有什么体会?还有哪些疑问?教师总结:同学们,今天我们知道了一个也没有就用0这个数字来表示,在生活中我们也经常见到0.直尺上的0表示从0开始,温度计上的0,表示的是一个基准.....我们还学会了0的写法。课下希望你们能留心观察,相信你们充满智慧的双眼会发现更多与0相关的问题。
二、说学生一年级学生活泼好动、具体形象思维占主要地位,更容易接受直观演示和情境体验的认知过程。在同时一年级学生受年龄限制特征,注意力不容易集中,在同一种活动中所保持的时间不长,因此课堂形式应该是灵活多变的,听、说、操作、独立思考、小组交流相结合。对于一年级的孩子,从生活中玩耍中学到的知识,要比书本上学到的知识更重要。通过自身体验获得知识能使头脑更加活跃。所授课两个班的孩子有一定的计算基础,绝大多数都能熟练地口头计算10以内的加减法,仅个别孩子还需要借助手指或者学具进行计算。根据具体情境图列算式时,多数孩子都能准确的提取图中的数学信息,但完成一图两式时,部分孩子有一定困难。据分析,这部分孩子对加减法互逆关系的理解不够牢靠,运用数学信息提出数学问题也不牢靠。因此,在学习10的加减法时,个别孩子可能在提问环节还有一定障碍。
一、教材分析:本教学内容是进位加法第三节课,在此之前,学生已经学习了11~20各数的认识,初步理解加法的含义,掌握了10以内的加法以及简单的10加几的运算,并且有学习9加几和8加几的基础。本课教材在创设“有几只小鸟”的情境中引导学生学习思考学习7加几的多种计算方法,然后安排了练一练,让学生在兴趣中用所用知识尝试解决问题,发展思维。二、教法与学法:本课面对一年级的学生进行教学。一年级的学生有着强烈的好奇心和求知欲。在日常生活中,有的学生已经有了一些计算20以内进位加法的经验,并且,通过前面的学习,学生已经会计算10以内加减法。教师在教学时应创设丰富多彩的活动,让学生在活动中经过独立思考,互相交流算法,体会计算方法的多样性,从而培养学生的创新意识和思维的多样性。
说教学目标【知识与技能】1.掌握十几减7、6退位减法的计算方法。2.能较准确地计算十几减7、6的减法,进一步提高学生的计算能力和分析、归纳能力。【过程与方法】创设情境,通过学生说一说、摆一摆等活动让学生自主探究十几减7、6的减法,明确算理。培养学生的探索能力。【情感、态度与价值观】让学生进一步感受数学与生活的联系,培养学生的问题意识。说教学过程一、创设情境,激趣导入师:一群可爱的小鸭子正在快乐地玩耍呢,我们一起去看看吧。(出示快乐的小鸭图)提问:仔细地看图,说一说图的意思是什么?你在图上知道了什么?你能提出什么数学问题?学生互相说图意。12只小鸭到河边去玩耍,有7只到河里游泳了。引导学生提出问题:,还剩几只在河边?
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。