二、活动准备1、录音机、电视机、广告录像以及有广告的报纸。 2、一盒牙膏、一支牙膏。 3、请幼儿回去注意收看、收听广告并收集广告。 三、活动过程1、师生共同欣赏广告词,引出主题。⑴(师生共同欣赏广告录像)教师:刚才,你看到了什么?是什么广告?⑵教师:小朋友,你还在哪里看过广告、听过广告?请你学一学广告词。2、了解广告的多种形式,请幼儿表演自己比较喜欢的广告。⑴教师:你还见过、听过什么样的广告?它是什么样的?广告词是怎么说的?⑵让幼儿先与同伴交流,再在集体面前大胆地讲述自己知道的广告词。⑶教师:这么多的广告,你最喜欢哪一个?请你给我们表演好吗?
1、画童话活动给予幼儿精神成长。 童话它以其极强的游戏精神抓住了爱好幻想的幼儿的心灵。它为幼儿营造了一方属于自己的精神乐土,把它们带入一个个超越时空的神奇境界,使幼儿强烈的好奇心和求知欲得到满足,并且唤起了天性中的良知与美德。而画童话的活动,把童话对于幼儿成长的意义作了进一步的深化,孩子们在理解童话、体会童话、感受童话的基础上画出自己的独特体验、独特想象,让幼儿用画笔在童话的世界中自由想象、自由驰骋,达到精神的自由和身心的愉悦,促进幼儿的精神成长。 2、童话《海的女儿》适合幼儿用画笔来描绘。 《海的女儿》是安徒生的著名童话,我们认为历经文化积淀的著名童话有着自身独特的文化和审美魄力,童话内容本身就对幼儿有着极大的感染力,同时我们认为具有以下特点的童话适合让幼儿用绘画的方式表现自己的想象和感受。一是情节能激发幼儿极大的艺术幻想的,让幼儿创造出更奇幻的情节的。二是形象具有拟人性和奇幻性,能使幼儿展开对形象的奇幻想象并将自己的情感和感受融入形象中的。三是具有单纯明快的叙事方式。便于幼儿顺着线性思路展开更丰富的想象,在童话中融进更多的自己。《海的女儿》便是这样的童话。
活动准备: 1、纸、勾线笔、油画棒。 2、教师相关的经验准备。(如能很快地画出一些不同的树) 3、幼儿用书人手一册。 活动过程: 一、观察果树,引出秋天的树。 1、教师在黑板上画出一棵果树,引起幼儿的兴趣。 2、这是什么?(苹果树)秋天是水果丰收的季节,瞧,满树都是红苹果。 3、你们看苹果树有一个大大的树冠,把许多苹果都围了起来。这个树冠是什么形状的呢?(椭圆形) 4、秋天到了,除了苹果树,你还见过什么样的果树?它们是什么样子、什么颜色的?幼儿说出后,教师将果子画在黑板上,便于观察了解绘画的方法。 5、你看见了哪些树、它们是什么颜色,什么样子的?教师根据幼儿的表述,快速地在黑板上画一画。
准备:1、各色图形的彩纸、废旧牙刷、颜料(红、黄、蓝)、抹布、牙签、旧报纸等。 2、范画两张(图形贴画和喷刷画)。 3、事前已进行过图形拼贴活动。过程: 1、出示图形贴画和喷刷画,引出课题。 引导幼儿欣赏两幅作品不同的艺术效果,它们的绘制方法有什么不同? 小结:两幅作品都运用了图形拼贴,内容都是一样的,但其中一幅的背景采用了喷刷方法,而原来的粘贴地方只留下了白色图案,今天我们大家一起来试试好吗?
活动准备: 各色颜料;幼儿绘画毛笔;吹塑纸;铅笔;幼儿自己的花卉日记;等。 活动重点: 感受不同材料进行作画的乐趣。 活动难点: 掌握版画的基本方法。设计思路: 随着主题活动《亲亲大自然》的开展,经过了一段时间幼儿对花卉的探索后,幼儿都制作了一本花卉日记本,在对日记本制作的后期做一个怎样的封面让大家开始了思考。在国外,版画是艺术类的必修课,近些年我国各地已有些版画家在为儿童版画教育事业默默地做贡献,这是非常可贵的。同时我受一些大画家版画作品的启发,发现版画的与众不同的美感,何不让我们的幼儿也来尝试尝试,陶冶幼儿的性情,使幼儿感受生活中的美,萌发审美、表现美的情趣呢?于是,我就设计了这次的版画活动。 活动流程:情景感知→交流讨论→过程运用
二、活动重点难点引导幼儿仔细观察,能大胆想象,一定规律用指腹压印画法画出孔雀羽毛的特点. 三、活动准备1.学具:活动材料每人一份,红,黄,蓝三种颜色每组一份. 2.教具:音乐磁带,范画一张,孔雀图片若干张. 四、活动流程欣赏舞蹈,感受孔雀的美----出示图片,认识孔雀----讲解画法,激发兴趣-----幼儿作画,教师巡回指导----展示作品,师生共评----活动延伸:学跳舞蹈
美术:与“神五”同游活动目标:1、大胆地设计出太空中的各种飞行器,想象出自己在太空上游戏的场面。2、鼓励幼儿大胆合作,大胆构图和用色。3、体验创作的快乐与成功。活动准备:油画棒、水性笔、铅画纸、颜料、信封、太空图活动过程:一、谈话:你们知道“神州五号”吗?谁来说说关于“神州五号”的事?(直接切入主题,激起话题,引发幼儿兴趣和自豪感,为下一步活动做准备。)
活动准备:带幼儿参观植物园或附近的公园,收集落叶。录音机、音乐磁带,线、纸条、双面胶等。 活动目标: 1、发展幼儿的观察能力并体验游戏带来的快乐。 2、激发幼儿想象,创编叶子飞舞的动作并用肢体动作来表现音乐。 活动过程: 一、观察、接触各种植物的叶子:(把幼儿分成三组,每组摆放一篮叶子供幼儿自由选择)
2.通过美工活动的进行学习运用手部小肌肉进行“撕、贴”活动。 3.通过活动的进行让幼儿体会美术创作的积极情绪。 二.准备材料: 1.16开铅画纸(画有苹果)。 2.红色、绿色美工纸若干。 3.固体胶管。 4.桌椅。 三.活动过程: 导入过程: 1.呈现画有大苹果的铅画纸,问①小朋友看到了什么.②小朋友想一想苹果是什么颜色的 2.简述及活动目的,并倾向朋友想一想自己想把苹果贴成什么颜色的.(强调要年贴在苹果图形内部)
【重难点】 重点:了解动物主要是通过声音、行动和气味三种方式传递信息。 难点:了解动物运用气味的联络方式。【活动准备】 知识:课前请幼儿搜集有关动物间联络方式的知识。 物质:各种动物的图片、展板、头饰、课件等。【活动过程】(一)导入:激发兴趣,引出主题。 1.教师口技表演(小鸟叫声),激发兴趣。 过渡语:小鸟虽然不会说话,但它可以用叫声来联络伙伴,那你们想知道其他动物是怎么联络伙伴的吗?今天我就给你们带来了动物交流联络时的录像,让我们一起看一看。 2.观看两种动物的联络方式,引出主题。 提问:蜘蛛遇到危险时,是怎样联络伙伴的? 蜜蜂是怎样跳舞的?我们一起来学学。(摇摆舞,八字舞) 你知道其它动物是怎样联络的? 过渡语:动物之间的联络方式有很多很多,下面就请小朋友和你的小伙伴边看着大图片边交流讨论:其它动物都是怎样联络的。孩子们,请到这边来!(二)展开:了解动物的三种主要联络方式。 1.幼儿自由观看讨论动物图片,发现学习。 2.引导幼儿了解动物主要的三种联络方式。 (1)幼儿交流自己知道的动物的联络方式。 (2)幼儿在充分说的基础上,教师进行动物联络方式的归类。
活动目标:1、创设情境,让幼儿在操作过程中尝试列出得数是2的加法算式,理解加号、等于号的含义。2、感知加法算式所表达的数量关系。3、在活动中体验游戏的愉悦,提高幼儿学习数学的兴趣。 活动准备: 物质准备:1、城堡图一幅(三层)第一层:鱼塘第二层:花园第三层:水果店 (1条热带鱼+1条金鱼=1条热带鱼1条金鱼)图一幅 2、幼儿操作材料(+、=40个,数字1、1、2各40张)、水果用具若干(每名幼儿两种)、水果购物券84张 知识准备:幼儿会以游戏的方式进行2的组成
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
(一)接受客观现实,调整就业期望值 从文章的第一部分我们可以看到,其实中高等级的职位需求是较少的,而较低等级的职位需求是巨大的,但是,许多大学生对“市场”残酷的一面认识不足,对就业市场的客观实际了解不够,只是停留在自己对“美好前途的幻想”之中,这就导致了就业市场上许多大学生找不到工作的同时,仍然有大量的职位空缺的现状。我们说,与其不停地成天怨天尤人,浪费了时间、影响了自己心情,还不如勇敢地承认和接受当前所面临的现实,彻底打破以往的美好想象,脚踏实地地寻求解决问题的好办法。这就要求我们调整就业的期望值。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。