提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

部编人教版一年级下册《动物王国开大会》说课稿

  • 小班主题背景下教师和家长的互动课件教案

    小班主题背景下教师和家长的互动课件教案

    教师是课程的执行者,要吃透主题精神,理解目标、框架,设计预设活动。教师是课程的设计者,要观察幼儿兴趣、积极回应幼儿,师生共同生成主题。教师捕捉本班幼儿的热点、需要和经验生成各班特有的主题,在实施共同的主题时,各班教师根据幼儿的需要和经验生成不同的小主题。每天自由活动时,幼儿总拿出不少玩具车玩,边玩边说“这是我吃麦当劳换来的,这是米老鼠车”;有的说“这是我妈妈给我买的坦克车”;还有一个小朋友对汽车特别感兴趣,每天说“这是宝马车,那是别克”。这时我发现孩子对车有了一定的生活经验,加上孩子对车有浓厚的兴趣,于是开始建构初步小汽车的主题网络,网络的建构依据是小班 幼儿的认知特点。幼儿比较关注外形特征等表面的问题,如马路上常见车的名字、几种特殊车的用途等,后来又根据实施情况对主题网络进行修改,增设了坐车要用的“一卡通”,不同颜色的出租车名等。

  • “全国交通安全反思日”国旗下讲话稿:注意安全 一路平安

    “全国交通安全反思日”国旗下讲话稿:注意安全 一路平安

    “全国交通安全反思日”国旗下讲话稿:注意安全一路平安尊敬的老师、亲爱的同学们:大家好!今天我演讲的题目是:全国交通安全反思日------注意安全、一路平安!说起死亡,人们常常与战争联系在一起,第一次世界大战两千万人丧失生命。第二次世界大战,又有三千六百万人化为青烟。然而,一个更为残酷的现实被人们忽略。那就是自第一辆汽车问世至今,已有四千万人惨死在飞驰的车轮下。根据公安部交通管理局统计,我国近年来,每年交通事故死亡的人数已经相当于一个县城的人口总数。每年受伤的人数相当于一个中等县的人数。更为可怕的是,全国每六分钟就有一个人死于车祸。当尖锐的刹车声响起,马路上又多了一抹殷红的血迹。于是,又有一个家庭将被悲哀与泪水笼罩,他们的生命,从此敷上一层阴霾。这样的伤痛我们已经经历了太多太多,那么多惨痛的代价已经让我们深深的体会到维护安全的不可或缺。

  • 第31个国际志愿者日国旗下讲话稿:让志愿服务成为一种精神

    第31个国际志愿者日国旗下讲话稿:让志愿服务成为一种精神

    老师们、同学们,大家上午好!今天我国旗下讲话的主题是让志愿服务成为一种精神。有一种精神叫奉献,有一种责任叫志愿!志愿服务是每个人自愿贡献个人的时间及精力,在没有任何物质报酬的情况下,为改善社会民生、促进社会和谐而提供的服务。志愿服务是广大青年弘扬社会新风、参与社会管理、彰显社会责任的生动实践。大力弘扬“团结、奉献、友爱、进步”的志愿精神,积极投身志愿服务行动,从我做起,从身边小事做起,与责任相伴,与文明同行,让志愿精神永远传承下去。今年12月5日是第31个国际志愿者日,为此,我们向所有老师和学生发出倡议:让我们行动起来,倡导文明,奉献社会,积极做志愿服务的实践者和传播者,用我们的行动争做文明有礼的田中人,用我们的爱心共同构建文明和谐的校园!

  • 关于开展教师师风师德学习心得体会例文

    关于开展教师师风师德学习心得体会例文

    一、具体实施方面:  1、根据区教文体局要求,组织全体教职工集中学习《教育法》、《教师法》、《未成年人保护法》、《中小学教师职业道德规范》、《郑州市中小学教师职业道德建设十项规范、十项惩戒》、《职业道德考核办法》等相关法律法规,并认真做好记录,写出深刻的反思和总结。  2、学习师德标兵的优秀事迹,让每位教师把纲要、规范、师德模范作为一面镜子,深刻反思自己的言行举止,深化师德教育。通过学习,提高全体教职工对加强师德师风建设的重要性、必要性的认识,自觉规范从教行为,促进园风、教风、学风的形成。

  • 开展《吸烟有害健康》主题班会教案八篇

    开展《吸烟有害健康》主题班会教案八篇

    (一)为何禁止青少年吸烟:根据世界卫生组织的统计,在世界各地每8秒钟就有一人死于与吸烟有关的疾病,每年有近500 万人因吸烟致死。这一数字在未来20 年中将有可能增加一倍。吸烟已经成为世界上最主要的致死因素之一。我国是一个烟草大国,目前吸烟人数约为3.2亿。在控制未成年人吸烟这个问题上,政府做了大量的工作,并于去年11月10日签署了联合国《烟草控制框架公约》,这一公约将于今年2月28日正式生效。但一个不容回避的事实是:在我国,未成年人吸烟率呈上升趋势,未成年人开始吸烟的年龄在下降,每天有8 万左右青少年成为长期烟民。这种状况不但影响了孩子的健康成长,而且严重影响我国整体国民身体素质的提高,所以未成年人吸烟问题越来越引起社会的广泛关注。

  • 空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    双曲线及其标准方程教学设计人教A版高中数学选择性必修第一册

    ∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究距离、夹角问题(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 幼儿园中班数学教案:小动物住新家

    幼儿园中班数学教案:小动物住新家

    2、运用目测数群再接着数完全部的方法,正确判断7以内的数量。   3、能学习别人的好方法,乐意使用新的方法数数。活动准备:  1、经验准备:幼儿已经认识了数字1——7。   2、物质准备:   教具:房屋形分类底版,7以内的动物卡片若干。   学具:房屋形分类底版,7以内的动物卡人手一套,数字卡片1——7人手一套。   环境:在黑板上创设动物园的环境,并在每个区域贴上数字。  活动过程: 1、游戏:参观动物园。复习认识数字1——7。   师:今天,老师带你们到动物园去玩,好吗?(出示黑板)看,动物园里有几个房间呀?这是几号房间呢?(引导幼儿复习认读数字。)  2、游戏:和动物做朋友。学习运用目测数群再接着数完全部的方法,正确感知7以内的数量。

  • 小班语言教案活动内容 别的礼物

    小班语言教案活动内容 别的礼物

    活动目标:1、 了解小兔西西在妈妈住院前后的改变,初步了解内容。2、 激发爱劳动的情感。活动准备:情景表演、头饰(小兔子、兔妈妈、小猴子)、故事磁带、教学挂图。活动过程:1、 情景导入(第一段故事内容):l 小兔西西出场。——“我是小兔西西,不爱劳动。兔妈妈有很多的事情要做,烧饭、洗衣,还要照顾西西。吃饭时,兔妈妈一口一口喂西西吃饭,衣服也要兔妈妈帮我穿,兔妈妈累极了,生病了。”l 看完表演后讨论:——“你们喜欢这样的小兔西西吗?为什么?”

  • XX年中国青年志愿者服务日国旗下讲话稿

    XX年中国青年志愿者服务日国旗下讲话稿

    尊敬的老师、亲爱的同学们:大家上午好!今天,我国旗下讲话的题目是《践行志愿服务,办好文明校运》。在XX年北京奥运会和XX年南京亚青会上,有一群人,他们遍布赛场内外,甚至大街小巷;人们亲切地称他们“小红帽”、“红马甲”;他们互不相识,但有着共同的信仰:奉献、友爱、互助、进步;他们没有冠军的光环,但更值得尊重;他们就是青年志愿者。XX年,共青团中央、中国青年志愿者协会共同决定把3月5日作为“中国青年志愿者服务日”。把“志愿者”定义为:志愿贡献个人的时间、精力,在不谋求物质报酬的前提下,从事社会服务事业,为推动社会进步提供服务的人。也许“不谋求物质报酬”、“推动社会进步”这些定义听起来很大、很远,甚至让人怀疑是不是要求太高了?

  • 2022年双十一网络购物情况调查报告优选八篇

    2022年双十一网络购物情况调查报告优选八篇

    据调查,在全国城市的调研中,上海、北京、深圳的网上购物人数已经超过300万,从年龄结构层次分,主要集中在18岁__35岁,从性别分,网上购物人数女性远远大于男性,从职业划分,全职工作的占到45%,从消费者所选择的购物网站中,有87%的网民选择在“淘宝”网站上购物。按照行为分,月度购买2次以上用户占比超六成,时间主要集中在中午12:00-晚上9:00,其中晚上9:00是网上购物的高峰时间段。

  • 小学科学教科版四年级上册《保护我们的听力》教案

    小学科学教科版四年级上册《保护我们的听力》教案

    过程与方法:通过阅读保护听力的资料,了解我们的听力经常受到哪些伤害,知道保护听力的做法。情感、态度、价值观:认识到保护听力的重要性,养成良好的用耳习惯和在公共场所保持肃静的习惯。教学重点认识到保护听力的重要性教学难点知道各种控制噪音的方法教学准备发音罐、报纸、毛巾、棉花等

  • 爱国教育国旗下讲话稿:《祖国在我心中》小学

    爱国教育国旗下讲话稿:《祖国在我心中》小学

    爱国教育国旗下讲话稿:《祖国在我心中》小学老师,同学们:你们好!今天我要讲的题目是:祖国在我心中。每当星期一早晨,我们望着头顶徐徐升起的五星红旗,听着那庄严的国歌,总有一种亲切的感觉。五星红旗是我们祖国的象征,所有中国人在看到她时都像看到了自己的祖国一样,敬重之情油然而生。在我们这些中华后代的心中,祖国永远是最伟大的!“祖国在我心中”,简简单单的六个字,道尽了多少中华儿女的心声,正因为有这样一颗中国心

上一页123...279280281282283284285286287288289290下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。