一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
请学生先用计算器求出各题的积,然后观察各题中相乘的两个数及所得的积,自主探索和发现积的变化规律。最后进行全班交流,教师做适当总结:这几道算式第一个乘数都是142857,第二个乘数分别是1、2、3、4、5、6,它们的得数与第一个乘数一样,都是由1、2、4、5、7、8这六个数字组成的六位数,不过各个数字所在的数位不同,但如果把这个六位数的乘数按顺时针方向排列在一个圆面上,可以发现这六个积里各数字的排列顺序是一样的,只不过起点不同:乘1的积是从最小的数“1”开始,乘2的积是从第二小的数字“2”开始,乘3的积是从第三小的数字“4”开始……,乘6的积是从最大的数字“8”开始。(2)再出示“想想做做”的第4题先出示:1×1=
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 8.3 两条直线的位置关系(二) *创设情境 兴趣导入 【问题】 平面内两条既不重合又不平行的直线肯定相交.如何求交点的坐标呢? 图8-12 介绍 质疑 引导 分析 了解 思考 启发 学生思考 *动脑思考 探索新知 如图8-12所示,两条相交直线的交点,既在上,又在上.所以的坐标是两条直线的方程的公共解.因此解两条直线的方程所组成的方程组,就可以得到两条直线交点的坐标. 观察图8-13,直线、相交于点P,如果不研究终边相同的角,共形成四个正角,分别为、、、,其中与,与为对顶角,而且. 图8-13 我们把两条直线相交所成的最小正角叫做这两条直线的夹角,记作. 规定,当两条直线平行或重合时,两条直线的夹角为零角,因此,两条直线夹角的取值范围为. 显然,在图8-13中,(或)是直线、的夹角,即. 当直线与直线的夹角为直角时称直线与直线垂直,记做.观察图8-14,显然,平行于轴的直线与平行于轴的直线垂直,即斜率为零的直线与斜率不存在的直线垂直. 图8-14 讲解 说明 讲解 说明 引领 分析 仔细 分析 讲解 关键 词语 思考 思考 理解 思考 理解 记忆 带领 学生 分析 带领 学生 分析 引导 式启 发学 生得 出结 果
设计意图:最后是当堂训练,目标检测,这一环节要尽量让学生独立完成,使训练高效,在学生训练时教师要巡回辅导,重点关注课堂表现不太突出的学生,由于本课时内容多,训练贯穿课堂始终,加上不能使用计算器,因此课堂节奏难于加快,所以当堂训练的时间预估不足。四、教学思考1.教材是素材,本节课对教材进行了全新的处理和大胆的取舍,力求创设符合学生实际的问题情境,让学生经历从实际问题中抽象出锐角三角函数模型的过程,发展了学生的应用意识及分析问题解决问题的能力,培养了学生的数学建模能力及转化的思维方法。2.充分相信学生并为学生提供展示自己的机会,课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及小组交流、演板等形式,帮助学生形成积极主动的求知态度。
本节内容来自人教版高中数学必修一第一章第一节集合第二课时的内容。集合论是现代数学的一个重要基础,是一个具有独特地位的数学分支。高中数学课程是将集合作为一种语言来学习,在这里它是作为刻画函数概念的基础知识和必备工具。本小节内容是在学习了集合的含义、集合的表示方法以及元素与集合的属于关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合间的基本运算的基础,因此本小节起着承上启下的关键作用.通过本节内容的学习,可以进一步帮助学生利用集合语言进行交流的能力,帮助学生养成自主学习、合作交流、归纳总结的学习习惯,培养学生从具体到抽象、从一般到特殊的数学思维能力,通过Venn图理解抽象概念,培养学生数形结合思想。
第一节通过研究集合中元素的特点研究了元素与集合之间的关系及集合的表示方法,而本节重点通过研究元素得到两个集合之间的关系,尤其学生学完两个集合之间的关系后,一定让学生明确元素与集合、集合与集合之间的区别。课程目标1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 图表达集合间的关系,体会直观图示对理解抽象概念的作用。数学学科素养1.数学抽象:子集和空集含义的理解;2.逻辑推理:子集、真子集、空集之间的联系与区别;3.数学运算:由集合间的关系求参数的范围,常见包含一元二次方程及其不等式和不等式组;4.数据分析:通过集合关系列不等式组, 此过程中重点关注端点是否含“=”及 问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。
本节内容是学生学习了任意角和弧度制,任意角的三角函数后,安排的一节继续深入学习内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数知识的基础,在教材中起承上启下的作用。同时,它体现的数学思想与方法在整个中学数学学习中起重要作用。课程目标1.理解并掌握同角三角函数基本关系式的推导及应用.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.数学学科素养1.数学抽象:理解同角三角函数基本关系式;2.逻辑推理: “sin α±cos α”同“sin αcos α”间的关系;3.数学运算:利用同角三角函数的基本关系式进行化简、求值与恒等式证明重点:理解并掌握同角三角函数基本关系式的推导及应用; 难点:会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.
9.例二:如图,AB∩α=B,A?α, ?a.直线AB与a具有怎样的位置关系?为什么?解:直线AB与a是异面直线。理由如下:若直线AB与a不是异面直线,则它们相交或平行,设它们确定的平面为β,则B∈β, 由于经过点B与直线a有且仅有一个平面α,因此平面平面α与β重合,从而 , 进而A∈α,这与A?α矛盾。所以直线AB与a是异面直线。补充说明:例二告诉我们一种判断异面直线的方法:与一个平面相交的直线和这个平面内不经过交点的直线是异面直线。10. 例3 已知a,b,c是三条直线,如果a与b是异面直线,b与c是异面直线,那么a与c有怎样的位置关系?并画图说明.解: 直线a与直线c的位置关系可以是平行、相交、异面.如图(1)(2)(3).总结:判定两条直线是异面直线的方法(1)定义法:由定义判断两条直线不可能在同一平面内.
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
全域国土绿化美化深入推进。一是新增百万亩国土绿化行动进展良好。截至X月X日,据各地上报统计,全省新增百万亩国土绿化行动已造林施工面积X万亩,是年度目标任务的X%,……两市超额完成年度计划任务。省局实行进度周报制度,并于X月、X月分别组织召开了视频推进会,全力推进省政府百万亩行动任务落实。X、X市主要领导专门作出批示指示,……X市将百万亩行动纳入市政府工作考核体系,X市实施“四季彩林”十大示范工程;……等县(市、区)政府高度重视,制定有力措施,强力推进百万亩国土绿化行动;……等地林业部门创新方法机制,将国土绿化与地方重点工程、行动结合,合力推进国土绿化美化。二是国家造林计划任务有序推进。今年起,国家造林任务实行计划到县、落地上图的管理机制。省森林资源监测中心主动衔接、创新方法机制,帮助指导各地按时完成年度计划任务数据上报。经国家、省、县三级确认,全省X年上报国家造林计划任务X万亩,是国家预下达计划任务的X%。此项工作得到国家林草局高度肯定,并在全国培训班上作典型发言。三是“一村万树”示范建设持续开展。
近年来,各县(市)、市直有关部门认真贯彻落市委、市政府关于返乡创业的工作部署,深入践行“五大发展理念”和“一线工作法”,带着真情、带着责任,以“绣花”功夫做好返乡创业工作。X市籍农民工和农民企业家积极响应X委、政府的号召,带着多年积累的物质财富和从实践中获得的宝贵经验投身家乡建设,自强不息、爱岗敬业,在经济社会各个领域大显身手,涌现出创业有成、无私奉献的先进典型,成为推动X经济社会持续健康发展的生力军。在此,我谨代表市委、市政府,向各县(市)、市直有关部门的辛勤付出表示衷心的感谢,向积极行动、返乡创业、助推家乡发展的各界人士致以崇高的敬意!
1、传统的工作思路和服务方式亟待转变。 当前我国已经开始进入老龄社会,老干部人员的增加、人员结构以及对服务工作的要求也发生了很大的变化,在新的形势与任务面前,老干部工作如何创新,如何不断开拓工作新思路,如何创新工作方式方法,是我们亟待转变和解决的重要问题之一。 2、离休干部与退休干部的管理服务工作中存在的矛盾亟待解决。 当前离退休干部的整体状况是,离休干部的人员比重越来越小,退休干部的人员比重越来越大,工作压力越来越大,在政策落实上要求向离休干部倾斜,实际工作量上以服务退休干部为主,这是现实工作中普遍存在的问题,做管理型服务还是做劳务型服务,关系到今后的工作导向,这同样是需要认真研究的一个重要问题。
(一)招商引资工作情况1.统筹制定全年任务,优化理顺工作机制。一是组织架构赋能,激发招商引资新活力。承接专班招商引资专项小组、综合协调专项小组工作,统筹推动各项市级专项招商工作。对接区委组织部开展xx区青年干部招商先锋队筹建及业务招商指导、业务培训、日常管理、成果考核等工作。二是考核指标固能,保障考核目标使命达。形成“企聚xx”2023年招商引资工作方案,梳理形成《xx区2023年企聚xx招商引资重点任务清单》,形成《“招商引资”考核指标评分标准(2023年)》《xx区青年干部招商先锋队招商任务考核标准》,保障目标任务落实到位。三是工作制度强能,实现工作推进高效行。建立周例会、周报、月总结汇报三个协调机制。制定标准化招商推介材料,组织招商引资专题业务培训。2.加快签约项目落地,助推实现“数税双收”。累计引进优质企业xx家,预计可实现年营收xx.x亿元、年纳税约x.xx亿元、投资总额xx.xx亿元。其中,预计年纳税xxxx万以上企业x家。xx家已落地企业中,市外投资企业共x家。深南东总部产业空间招商先锋队已引进项目x个,正在进行注册x个项目。3.推进储备重点项目。2023年1月至6月,储备重点在谈项目xx个。xxx强/央企/国企/外商投资项目x个、上市公司投资项目x个、准独角兽项目x个、国高企业项目x个。深南东总部产业空间招商先锋队已对接企业xx家,重点跟进项目xx个。4.拓宽招商引资渠道,集聚优质项目资源。召开招商引资推介会,会同市商务局举办“2023伦敦科技周—中英科技企业交流活动”。加大力度对接第三方资源,注重产业研究,发力国际资源,开展楼宇招商,广建渠道网络。
(一)规划编制情况。我们不断深化对XXX区发展的认识和再认识,经过反复讨论研究,进一步明确了XXX区的发展思路,即:坚持一个目标:建设全国一流空港经济示范区;实施两大战略:基础设施提升战略和产业集聚战略;推进三区建设:空港型国家物流枢纽承载区、XXX跨境电商综合试验区、XXX自贸区联动发展区;发展四大产业:航空物流、高端制造、航空服务、数字经济。我们积极配合市资源规划局完成《XXX区总体规划》编制,结合正在编制的《XXX市国土空间总体规划(2023—2035年)》要求,已将XXX区规划的有关修改意见反馈给市资源规划局。在新版总体规划尚未确定的情况下,经XXX区建设领导小组同意,确定紧邻机场南侧的4.9平方公里作为起步区,并具体规划了航空制造、航空物流、数字经济、商务服务4个产业分区。编制完成《起步区产业规划》和《起步区城市设计和设计导则》。会同市直相关部门完善起步区道路竖向规划,供水、排水、供电、燃气、供热专项规划以及管线综合规划。完成航空制造产业园项目的立项申报,定位测量、控详规划、五线图、规划条件核发,出让宗地平面图及竖向图测设,地价评估,修详方案设计、规划报批的总平、单体工程平立剖面图的编绘工作。完成XXX区双创加速器、口岸物流产业园、XXX区数据湖产业园建设项目的控详图及修详方案编制工作。配合市发改委完成国家物流枢纽规划编制工作,完成对俄出口跨境电商物流园区建设方案。
同志们:这次会议是市委市政主要领导亲自批示要求、亲自安排部署,组织召开的一次十分重要的会议。主要任务是:传达贯彻第**次全国信访工作会议和省委常委会、省政府常务会对信访工作的部署要求及全省信访工作会议和省信访工作联席会议**年第**次全体(扩大)会议精神,专题对**文博会,特别是2023年全国“两会”信访安全保障工作进行安排部署。刚才,会议传达学习了中央和省上相关会议精神,宣读了省委、省政府主要领导和市委**、市政府**市长的有关批示,通报了今年以来全市信访工作情况,**、**、**的有关负责同志作了工作交流发言,同时会议还印发了《2023年全国“两会”期间全市信访安全保障工作方案》,交办了省市两级摸排的涉访重点人员,请大家认真学习领会、切实抓好贯彻落实。下面,我就做好当前和今后一个时期,特别是2023年全国“两会”信访安全保障工作,强调两点意见。一、以最高的政治站位,充分认识做好当前信访工作的极端重要性和紧迫性
二、2024年工作打算(一)推动完善公司治理和内控体系建设结合国企改革三年行动成果,加快推进公司标准化、合规化和现代化建设体系,确保各项改革举措落地落实。(二)推动业务拓展力度持续推进X信公司与省农担的战略合作,进一步完善业务流程和工作指引,深入乡镇抓好业务推介,加大担保产品开发,拓宽金融机构合作范围。(三)推动非融资担保业务开展积极协调相关部门配合开展应付款项、诉讼保全、工程履约及民工工资履约等担保业务,构建“政、银、企、担”全链条融资担保模式,加快拓展公司非融资担保业务。(四)推动应急转贷业务开展积极推进建立应急转贷业务资金池,完善应急转贷资金的管理使用办法,切实解决县域中小微企业和“三农主体”“转贷难”、“转贷贵”的问题。(五)推动化解公司面临困境积极争取县委、县政府及县级部门的支持,研究并制定切实可行的方案,全面解决X森公司遗留问题,做强做大X森公司,重启与县内各大金融机构的合作,充分发挥融担功能更好服务于县域经济。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。