代表建议办理往往涉及多个单位,督办工作量大,不能单靠代表工作部门。县人大常委会主任会议坚持“全局性、代表性、可行性”原则,每年研究确定x件左右的重点督办件,建立以“县领导重点领办、人大各专(工)委专项督办、有关部门具体承办”的重点督办机制,其他建议按照对口原则领任务、抓督办,并适时开展工作调度,促进办理工作按时保质完成,持续推进人民群众普遍关注的热点难点问题解决,增进民生福祉。县人大常委会坚持对建议深入研究、分类施策,优化建议督办方式,将之与年度监督工作有机结合,进而延伸工作链条、增强督办力量、推进办理深化。例如,在今年初,围绕代表建议“密集”关注的城镇老旧小区改造和社区服务提升工作,研究确定县发展改革委、县住房城乡建委等作为2023年度工作评议对象,将建议办理情况列入监督内容,促使他们把办理工作与中心工作一体谋划推进,进一步推动建议办理见行动、出成效。
我认为这首诗,一共三节,每节句数、字数相当,结构工整,符合建筑美的特点,同时也使诗歌具有了节奏感;另外这首诗音韵和谐,朗朗上口。我认为这首诗相同句式回环往复,给人留下深刻印象。我认为此诗语言犹如清水出芙蓉,清丽淡雅,营造了唯美纯净的世界。…………师:节奏把握这一技巧相对比较简单,大家的创作和点评都很有水准,很好。希望大家在以后课余的诗歌创作中能兼顾到我们现在所谈的技巧。【设计意图】讲诗歌的创作技巧,既要讲出最关键的技巧,也要结合实例,让讲解深入浅出,让学生在理解的同时加以训练,使学生能够加深对知识点的理解。三、课内演练,巩固技法 学习本节课的技法之后,请大家写一首诗或一个诗歌片段,要求运用本节课所讲的诗歌写作技巧。(学生思考创作并展示)
例如《你是山间的清泉》《你是天空的雄鹰》《你是三春晖》《你是燃烧的红烛》等。先想好歌颂的对象,再展开联想、想象,结合事物的特点,融入自己的情感。如要写“母亲”,想想由母亲的特质可以联想到什么具体形象,如从母亲的勤劳想到老黄牛,从母亲对孩子无私的爱和付出联想到阳光、雨露、蜡烛等。 范文引路:五、课后巩固,布置作业(福建漳州)题目:守护 (将题目补充完整,然后作文)要求:(1)文体不限,字数不少于600字(诗歌不少于30行)。(2)不得出现真实人名、校名。(3)字迹工整,卷面整洁。 写作点拨:预设:本题是半命题作文题,题目“守护”是一个动词后面可以跟宾主,如“快乐”“向往”“妈妈”“歌声”等,或抽象或具体,都可以,还可以拟题“守护者”等。“守护”分为几个层面:谁守护?守护什么?怎样守护?守护结果如何?如此等等。可以抓住其中一个层面,写叙事诗、抒情诗、论辩色彩浓郁的诗等。从题目要求看,诗歌不少于30行,这么长的诗歌适合分为几个,通过几个片段、镜头、故事、感想等来表现主题。
Sales representative2015.10-2017.12 Chuanghuantechnology trading co. LTD.1, responsible for executing the Russian market implementation of planningand organizing activities2, responsible for the collection of web information, resource management;3, integrate internal and external resources, planning overseas brandpublicity of related productsSales representative2012.04-2015.09 Globalinternational trading co. LTD.1, market research, collect relevant market dynamics and analysis, providethe basis for leadership decision-making;2, according to the market demand and customer comments, for the company'sproducts, services, and promote the improvement opinions;Sales representative2011.02-2012.01 Onemonth heeducation technology co. LTD.1, perform conventional publicizing;2, according to a specified market promotion plan to implement the companydaily promotion, key projects, cooperation projects, product release PRplanning and execution
三、说教学目标1.指导学生认识“江、南、可、等”9个生字。会写“可、东、西”3个字。学习新笔画“竖弯钩”“竖弯”。? 2.引导学生正确流利地朗读课文。背诵课文。感悟江南水乡的美景。? 3.培养学生热爱大自然的感情。四、说教学重难点1.让学生通过识字,能正确流利地读、背古诗。(重点)?2.感悟江南水乡的美景,培养学生热爱大自然的情感。(难点)五、说教法和学法教学是教师和学生互动的一个双边活动,在这个活动中教师是学习的组织者、引导者、合作者,而学生才是学习的主体,因此本节课我采用了“激、促、查、教”等教学方法,指导学生在“自主、合作”中学习,以达到“生成知识、运用知识”的目的。
按照要求,我们谋划了三个项目:一是服务能力提升项目;二是3.0T磁共振购置项目;三是健康管理中心建设项目。三个项目已上报市相关部门,目前专项债资金未到位,中医院自筹资金垫付购置了3.0T磁共振,其他两个专项债待资金到位后,集中力量、加快推进,明确项目建设的时间节点,把握好项目进度,确保项目有序推进,如期完成。(四)“十二项重点工作”落实情况。中医院在xx药业投资建设的滴眼剂制剂项目,目前产品已完成前期相应的研发,正在委托第三方进行相容性、稳定性研究工作。投产后年生产滴眼剂约xx万支,xx药业预计实现年营业收入xx万元。二、存在问题(一)“七个专项行动”方面。在“七个专项行动”方面,通过开展乡村医疗卫生服务体系建设提升行动,对常见病和急危重症救治能力明显提升,但重特大疾病的救治能力有待提升。
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
举办A级旅游景区服务技能大赛、导游服务技能竞赛,开展文旅从业人员培训,提升景区、星级饭店、旅行社以及导游等从业人员服务技能。通过合作、引进等方式,吸引一批高品质品牌酒店、民宿入驻黔西南,满足各类游客、旅客住宿需求,实现游客“食之爽心”“住之安心”“行之顺心”“游之舒心”“购之称心”“娱之开心”,以用心服务换取游客满意体验。三是抓好客源引流。紧盯“万峰成林处、阳光黔西南”和“康养胜地、人文兴义”定位,深入挖掘“1+3+N”路跑模式,举办一次全马、三次半马、若干主题路跑活动,多层次、全方位吸引不同类别的人群参与,以高水平服务带动高人气旅游。分阶段开展春季赏花/康养旅游暨五一州庆假期宣传推广攻势、夏季避暑/民俗节庆旅游暨暑期宣传推广攻势、秋季节气/民宿旅游暨国庆假期宣传推广攻势、冬季康养旅游暨春节假期宣传推广攻势。
3、月度考勤时间为上月 日至当月 止。4、考勤员应严格遵守考勤制度,不得擅自更改、虚报、漏报考勤记录。考勤员漏报、虚报的经部门负责人发现每扣 元,经办公室发现每次扣 元。5、中层以下管理人员请假三天以下,由 批准;请假三天以上由部门经理初核,相应 批准。
今年中秋国庆假期,广元白天花团锦簇,夜晚霓虹璀璨,景区欢声笑语,街巷人潮涌动全市迎客人次和旅游收入双双回升,增幅超过全省平均水平3.04个百分点和39.89个百分点、超过全国平均水平10.12个百分点和52.63个百分点。项目是经济社会发展的总抓手,抓项目就是抓发展,谋项目就是谋未来。推进景区“二次创业”,昭化区全域旅游配套设施提升工程已完成昭化古城等景区旅游设施改造提升。今年1—9月,我市文旅部门积极与方特科技等文旅企业对接洽谈,先后外出考察和接待客商6次。签约昭化葭萌院子等项目10个,签约金额10.05亿元;加快推进米仓山大峡谷旅游景区等27个文旅康养项目,累计完成投资77.15亿元。同时,丰富文旅产品业态,推动文旅融合,将文化元素融入景区景点,将公共文化场所纳入重点旅游线路,开发非遗之旅、文博之旅新产品;培育艺术展览、文旅展会等新业态;加大120厂、109厂等工业遗址保护利用让望得见山、看得见水、记得住乡愁在广元得到生动展现。
今年中秋国庆假期,广元白天花团锦簇,夜晚霓虹璀璨,景区欢声笑语,街巷人潮涌动全市迎客人次和旅游收入双双回升,增幅超过全省平均水平3.04个百分点和39.89个百分点、超过全国平均水平10.12个百分点和52.63个百分点。项目是经济社会发展的总抓手,抓项目就是抓发展,谋项目就是谋未来。推进景区“二次创业”,昭化区全域旅游配套设施提升工程已完成昭化古城等景区旅游设施改造提升。今年1—9月,我市文旅部门积极与方特科技等文旅企业对接洽谈,先后外出考察和接待客商6次。签约昭化葭萌院子等项目10个,签约金额10.05亿元;加快推进米仓山大峡谷旅游景区等27个文旅康养项目,累计完成投资77.15亿元。同时,丰富文旅产品业态,推动文旅融合,将文化元素融入景区景点,将公共文化场所纳入重点旅游线路,开发非遗之旅、文博之旅新产品;培育艺术展览、文旅展会等新业态;加大120厂、109厂等工业遗址保护利用让望得见山、看得见水、记得住乡愁在广元得到生动展现。
2、引导幼儿体验丢失东西和捡到东西后的着急心情,找到东西和把东西还给别人时的不同情绪情感。准备:动物头饰情景表演过程:开始部分(一)引起兴趣,引出课题。 师:今天,老师要来变个魔术,你们想看吗?(二)基本部分:1、情景表演,让幼儿了解小猫丢了东西着急、难过的心情和小兔把东西还给它以后高兴的心情。提问: 1、小猫丢了什么?心里怎么样?(着急、难过)2、谁捡到了帽子? (小兔)3、小兔捡到了帽子是怎么做的? (他说了什么?)集体练习: 请问,这是你丢的帽子吗?小结: 把帽子还给了小猫,小猫可高兴了,小兔着见小猫这么高兴,他心理也很高兴,我们小朋友要向小兔学习,拾到东西要还给别人。2、讨论,帮助幼儿体验丢了东西、拾到东西还给别人等情况下的不同情感。(1)小朋友有没有无过东西? 丢过什么? 心里怎样?(2)你丢了东西,别人拾了还给你,你心里怎样?(3)你有没有拾到过别人的东西? 你是怎么做的? 心里怎么样?
1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)理解性质,应用巩固师提出问题:我们可以回过头来,想一想刚解过的方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.对比练习: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、化简、检验.)
先让学生自己总结,然后互相交流,得出结论。解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。板书:解一元一次方程一般步骤:1、 去分母-----等式性质22、 去括号----去括号法则3、 移项----等式性质14、 合并同类项----合并同类项法则5、 系数化为1.----等式性质2【课堂练习】练习:解下列一元一次方程解方程: (2) ;思路点拔:(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏。(2)用分母的最小公倍数去乘方程的两边时,不要漏掉等号两边不含分母的项。(3)去掉分母后,分数线也同时去掉,分子上的多项式用括号括起来。回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母—去括号—移项—合并同类项—系数化为1等步骤,就可以使一元一次方程逐步向着 =a的形式转化。
小明说:“我姐姐今年的年龄是我去年的年龄的2倍少6,”已知姐姐今年20岁,问小明今年几岁?若取小明今年为x岁,则依据下面的等量关系式列方程:姐姐今年的年龄=小明去年年龄的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9总结:根据乘法分配律和去括号法则(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号)去括号时要注意:1、 不要漏乘括号内的任何一项;2、若括号前面是“-”号,记住去括号后括号内各项都变号.习题训练:解方程,如课本P122练一练1,P113练一练2等.思维拓展,解简单的应用题,如课本P123练一练3或补充一些题,如含小括号、中括号、大括号的方程(这方面课本安排几乎没有,只限浅显问题,教师不必深究)
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2016次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读,理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计1.提公因式分解因式的一般步骤:(1)观察;(2)适当变形;(3)确定公因式;(4)提取公因式.2.提公因式法因式分解的应用本课时是在上一课时的基础上进行的拓展延伸,在教学时要给学生足够主动权和思考空间,突出学生在课堂上的主体地位,引导和鼓励学生自主探究,在培养学生创新能力的同时提高学生的逻辑思维能力.
【类型三】 分式方程无解,求字母的值若关于x的分式方程2x-2+mxx2-4=3x+2无解,求m的值.解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①当m-1=0时,此方程无解,此时m=1;②方程有增根,则x=2或x=-2,当x=2时,代入(m-1)x=-10得(m-1)×2=-10,m=-4;当x=-2时,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的解法方程两边同乘以最简公分母,化为整式方程求解,再检验.2.分式方程的增根(1)解分式方程为什么会产生增根;(2)分式方程检验的方法.
首先请学生分析:过B、C作梯形ABCD的高,将梯形分割成两个直角三角形和一个矩形来解.教师可请一名同学上黑板板书,其他学生笔答此题.教师在巡视中为个别学生解开疑点,查漏补缺.解:作BE⊥AD,CF⊥AD,垂足分别为E、F,则BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB长46m,坡角α等于30°,坝底宽AD约为68.8m.引导全体同学通过评价黑板上的板演,总结解坡度问题需要注意的问题:①适当添加辅助线,将梯形分割为直角三角形和矩形.③计算中尽量选择较简便、直接的关系式加以计算.三、课堂小结:请学生总结:解直角三角形时,运用直角三角形有关知识,通过数值计算,去求出图形中的某些边的长度或角的大小.在分析问题时,最好画出几何图形,按照图中的边角之间的关系进行计算.这样可以帮助思考、防止出错.四、布置作业