(一)复习导入 师:什么是体积?生:物体所占空间的大小是物体的体积。师:怎样求长方体和正方体的体积?生:长方体的体积=底面积×高 正方体的体积=底面积×高师:圆的面积计算公式是怎样推导出来的?课件出示:生:把圆转化成长方形,长方形的长等于圆柱底面周长的一半,宽等于半径,所以圆的面积:S = πr2猜测:把圆柱转化成什么立体图形来推导圆柱的体积公式呢?呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。
(一)观图激趣、设疑导入 师:同学们,今天和老师一起完成一个知识大比拼的游戏,(PPT课件出示)准备好了吗?1、填空。15∶3=( )∶( )2∶3=( )÷( )0.2=( )∶2=( )÷62、根据比例的基本性质,把下列各比改写为乘法等式。3:8=15:40 x:4=1:2生:准备好了。师:现在我们开始。师:今天和老师学习怎样解比例。(板书课题:解比例)【设计意图】这种方法的导入,让学生更快、更集中注意力奔向主题,没有渲染的成分,简单实用。(二)探究新知1、自学解比例的意义师:阅读教材第42页,理解什么叫做解比例。生:求比例中的未知项叫做解比例。教师板书:求比例中的未知项叫做解比例。2、学习例2,应用比例的基本性质解比例。(1)出示例2的PPT课件。法国巴黎的埃菲尔铁塔高度约320 m。北京的世界公园里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1∶10。这座模型高多少米?(2)理解题意,弄清模型的高度∶原塔高度=1∶10。师:同学们,你是怎样理解题目中1∶10的?生:题目中告诉我们1∶10是埃菲尔铁塔模型的高度与原塔高度的比。师:你能根据题意写出比例关系式吗?生:根据题意列比例关系式:模型的高度∶原塔高度=1∶10。师:这个关系式用数字该怎样表示?生:老师,在这个比例中我只知道三个数字,模型的高度的数量我不知道是几呀?师:这位同学观察得很仔细,哪位同学愿意帮助他解决这个问题?生:老师我想用字母x代替模型高度的数量,您看可以吗?师:好的,你的想法非常的好,也很正确!师:题目中告诉我们原塔高度是多少?生:320 m。
(一)复习导入 1. 师:同学们,你们去过这些景区吗?(课件第2张)鸟巢、水立方、市容卫生、绿化建设、城市规划建设、航天事业的发展。 2.师:我国的经济建设日新月异,人民生活的不断提高,基础建设全面展开。你知道这些设施的费用是从哪儿来的吗?生:这些设施的费用都是政府投资的,是国家出钱建设的。师:国家的钱又是从哪儿来的?生:国家的财源主要来自税收。3.导出纳税、税率。(课件第3张)生1:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。生2:税收是国家收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防等事业。生3:每个公民都有依法纳税的义务哦!这节课我们就来学习有关税收的知识。板书课题:税率【设计意图】 联系学生的生活实际,使学生知道每个公民都有依法纳税的义务,增强学生的纳税意识。(二)探究新知 1、探究税率的含义。(课件第4张)(1)你知道哪些纳税项目?应该怎样缴纳税款呢?生1:税收主要分为消费税、增值税、营业税和个人所得税等几类。生2:缴纳的税款叫做应纳税额,应纳税额与各种收入(销售额、营业额……)的比率叫做税率。2、探索应纳税额的计算。(课件第5张)(1)有一家饭店10月份的营业额是30万元,如果按营业额的5%缴纳营业税,这家饭店10月份应缴纳营业税多少万元?(2)小组讨论:你是怎样想的?说说你的思考过程。(3)汇报交流:(课件第6张)生1:缴纳的营业税是营业额的5%。生2:求营业额的5%是多少,用乘法计算。生3:30×5%=1.5(万元)答:这家饭店10月份应缴纳营业税1.5万元。3、做一做。(课件第7张)(1)李阿姨的月工资是5000元,扣除3500元个税免征额后的部分需要按3%的税率缴纳个人所得税。她应缴个人所得税多少元?小组合作:你会做吗?说说你的想法。汇报交流:(课件第8张)生1:“扣除3500元个税免征额后的部分”这句话是什么意思?生2:要从工资总数里减去3500元,剩下的钱按3%的税率缴税。生3:(5000-3500)×3%=1500×0.03=45(元)答:她应缴个人所得税45元。 (2)计算某商场5月份商品零售营业税。(课件第9张) 你会做吗?说说你的想法。小组合作:你是怎样想的?说说你的思考过程。(课件第10张)汇报交流:(课件第11张)生:先求总营业额,再求营业税。 72+35+46+21+56=230(万元)230×5%=1.15(万元) 答:这个商场5月份商品零售营业税是1.15万元。 (3)丰华商场9月份按规定缴了1.85万元的营业税,他们纳税的税率是5%。这个商场9月份的营业额是多少万元?(课件第12张)生1:把营业额看做单位“1”,求营业额,做除法。生2:1.85÷5%=1.85÷0.05=370(万元)答:这个商场9月份的营业额是370万元。生3:把营业额看做单位“1”,求营业额,也可以列方程解答。(课件第13张)解:设这个商场9月份的营业额是x万元。
(一)复习旧知,导入新课。1、师:同学们,你们还记得《乌鸦喝水》的故事吗?我们先来看一看这个故事吧!(课件第2张播放视频《乌鸦喝水》)【设计意图】用视频引入课题,激发学生的学习兴趣。2、乌鸦是怎么喝到水的?为什么?(课件第3张)生1:乌鸦把石子投进水罐中,水面升高了,乌鸦就喝到水了。生2:这说明石子占了一定的空间,所以水面会升高,乌鸦才能喝到水。师:这节课我们就来研究一下体积和体积单位。(板书课题)(二)探究新知1.小组实验并观察:(课件地4张)(1)取两个同样大小的玻璃杯,先往一个杯子里倒满水;取一块鹅卵石放入另一个杯子,再把第一个杯子里的水倒进第二个杯子里,会出现什么情况?为什么?(2)汇报交流:(课件第5张)生1:第一个杯子里的水不能全部倒入第二个杯子里。师:你知道为什么会出现这种现象吗?生2:鹅卵石占了一定的空间,所以第一个杯子会剩下一部分水。【设计意图】用实验的方式,让学生从实验的过程中发现现象并进一步思考原因,从而找到规律,培养学生的观察能力、思维能力。2.下面的洗衣机、影碟机和手机,哪个所占的空间大?(课件第6张)洗衣机所占的空间最大。3.引入体积的意义:师:物体所占空间的大小叫做物体的体积。师:上面三个物体,哪个体积最大?哪个体积最小? 生:洗衣机的体积最大,手机的体积最小。4.学习体积单位(课件第7张)(1)怎样比较下面两个长方体体积的大小呢?
(一)激趣导入。 一、创设情境,引入新课(课件第2张)1.谈话:师:同学们,这节课我们先来做一个抢答游戏,看你们对以前学过的知识掌握的怎么样。2.抢答:请同学们以最快的速度说出下面的数有几个因数。师出示数,学生抢答因数的个数。3.思考:(1)一个数的最小因数是几?最大因数是几?(课件第3张)(2)一个数的因数是有限的还是无限的?(3)怎样找一个数的因数?生1:一个数是最小因数是1,最大因数是它本身。 生2:一个数因数的个数是有限的。生3:找一个数的因数,用这个数依次除以1,2,3,4……商如果是整数,除数和商都是这个数的因数。 【设计意图】用抢答游戏的方式引入课题,引起学生的兴趣,通过对旧知识的复习,为下面要学习的质数与合数做准备。4.师:我们学过找一个数的因数的方法,那一个数的因数的个数又有什么规律呢?这节课我们来学习两个新概念:质数和合数。(板书课题) . (二)探究新知 1. 找出1—20各数的因数,看看它们的因数的个数有什么规律。(1)学生小组内交流,写出1——20各数的因数,看看它们的因数的个数有什么特点。(课件第4张演示)1的因数有:1 11的因数有:1,11 2的因数有:1,2 12的因数有:1,2,3,4,6,12 3的因数有:1,3 13的因数有:1,13 4的因数有:1,2,4 14的因数有:1,2,7,14 5的因数有:1,5 15的因数有:1,3,5,15 6的因数有:1,2,3,6 16的因数有:1,2,4,8,16 7的因数有:1,7 17的因数有:1,17 8的因数有:1,2,4,8 18的因数有:1,2,3,6,9,18 9的因数有:1,3,9 19的因数有:1,19 10的因数有:1,2,5,10 20的因数有:1,2,4,5,10,20
(一)复习导入 1.师:我们学过了因数的有关知识,下面老师就检验一下,看你们学得怎么样?(课件第2张)(1)24的因数有(1,2,3,4,6,8,12,24),30的因数有(1,2,3,5,6,10,15,30),24和30的公因数有(1,2,3,6),它们的最大公因数是(6)。(2)分数的分子和分母同时(乘)或(除以)一个(相同的数)(0除外),分数的大小(不变),这叫做分数的基本性质。【设计意图】复习旧知,约分的根据是分数的基本性质,要约成最简分数,需要分子和分母同时除以它们的最大公因数,所以复习环节设计了这两个知识点的练习,为学习新知识做准备。2.大家一定都喜欢孙悟空吧!你知道孙悟空最大的本事是什么吗?(72变)这节课我们就来创造第73变——变分数!(二)探究新知 1、探究约分的方法。(1)把化成分子和分母比较小且分数大小不变的分数。(课件第4张) 小组讨论:你是怎么想的?汇报交流(课件第5张)生1:可以用分子和分母的公因数(1除外)去除。生2:我用24和30的公因数2去除,,然后再用12和15的公因数3去除, 生3:我直接用24和30的最大公因数6去除。(2)用自己的话说说什么是约分?(课件第6张)生1:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
(一)复习旧知,导入新课。师:同学们,上节课我们认识了体积和体积单位,请你填一填这两道题,看看你学得怎么样。(课件第2张)1.常用的体积单位有(立方厘米)、(立方分米)、(立方米),可以分别写成(cm³) 、(dm³)、 (m³)。2.棱长是1cm的正方体,体积是(1cm³)。3.棱长是1dm的正方体,体积是(1dm³)。4.棱长是1m的正方体,体积是(1m³)。【设计意图】1dm³是多少cm³呢?这节课我们就来研究一下体积单位间的进率。(板书课题)(二)探究新知1.探究立方分米和立方厘米间的进率:(课件第3张)(1)下图是一个棱长为1dm的正方体,体积是1dm³。想一想,它的体积是多少立方厘米呢?(2)小组讨论,你是怎样想的?(3)汇报交流:(课件第4张)生1:如果把它的棱长看作是10cm,可以把它切成1000块1cm³的小正方体。10×10×10=1000.生2:它的底面积是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【设计意图】用小组讨论的方式,让学生从讨论的过程中找到解决问题的方法,培养学生的语言表达能力、思维能力。2.你知道1m³等于多少立方分米吗?(课件第5张)生1:把棱长是1m的正方体,看作棱长是10dm的正方体,10×10×10=1000dm³。1m³=1000dm³。 生2:棱长是1m的正方体,底面积是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理计量单位之间的进率。(1)小组讨论:到现在为止,我们已经学习了哪些计量单位?请整理在表中。
教师必须关爱学生,尊重学生人格,促入他们在德、智、体、美、劳各方面都得到发展,我们应多与学生进行情感方面的交流,做学生的知心朋友,多给他们一份爱心,一声赞美,一个微笑,少一些说教,要更多和他们谈心,帮助他们查找“后进”的原因,真正做到对症下药,在学习和生活细节上关心他们。老师对学生不要体罚,不要训斥,不要高高在上,而应该做一个和气的人,一个严谨的人。学生也有自尊心,而且是很强烈的。老师对学生的批评,恰当的,就是一种激励;不恰当的,就会成为一种伤害。
(3)补充题:2008年的奥运会在北京举行,小明的爸爸决定去北京观看一些比赛项目,为中国健儿加油。如果坐汽车,每小时行使60千米,4小时可以多少千米?如果坐火车,火车的速度是汽车的2倍,同样的时间可以行使多少千米?这题的第2个问题中蕴含着两种解题思路,让学生说一说、比一比。一种是根据速度×时间=路程的数量关系,先算出变化了的那个因数是多少,再求积。另一种是根据一个因数不变,另一个因数乘以几,原来的积也乘以几解决问题。两种方法得出的积相同,使学生体会积的变化规律是客观存在的普遍规律。『设计理念』在层次分明,形式多样的练习中,通过让学生想一想、填一填、说一说,使学生在规律的应用中逐步加深对积的变化规律的理解。
2、综合训练这道题的关键是,让学生理解木料的段数相当于排在两端的物体,锯的次数相当于排在中间的物体。这是对基本规律的联想和深化,提高了学生应用知识解决问题的能力。3、拓展训练我再次请出5位女生,围成一圈,要求两个女生中间站一个男生,又可以站多少个男生呢?引导学生认识到围成一圈时,间隔排列的两种物体的数量是相等的。这样的游戏设计,化直为曲,使学生体会到在直线上的间隔现象与封闭图形的间隔现象之间的联系与区别,体会规律的发展变化,从而提升了规律。最后进行课堂总结,布置一个实践性作业运用课上找到的规律,结合生活实际,做一个小小的设计。(如用彩灯布置教室,用美丽的图案打扮自己的卧室,设计美观大方的广场,设计有创意的游戏等。)通过布置开放性的作业,进一步把所学的知识和现实生活联系起来,培养学生的创新能力,使学生体验数学的价值。
第三个规律,商不变的规律。这是本课的重点内容。有了两次的探究经验,这一规律的学习与理解,可以完全放手让学生自主进行。猜想如果商不变,被除数、除数会发生什么变化呢?学生根据已有的经验,可能会有不同猜想,我要求学生带着问题通过计算、观察、比较、主动探讨总结出:被除数和除数同时扩大(或缩小)相同的倍数(0除外)商不变。利用合作学习,通过动脑动口动手,既提高学生解决问题的学习能力,又培养了合作学习的意识和习惯。给学生提供展示研究成果的机会,体验成功。需要教师提醒的是“有没有被除数和除数同时乘或除以不相同的数,商也不变的?”学生举反例加以说明并指出“相同的倍数不包括0”。设计这个环节,也有意让学生去验证商不变性质。学生在表述时,对于逻辑的严密性和语言的完整性需要老师及时指导,在突出重点的同时培养学生的语言表达能力。整个环节在验证的基础上,步步深化商的变化规律,为学生应用新知做好铺垫。
三、学情与教材分析《积的变化规律》是九年义务教育课程标准实验教科书小学数学四年级上册第三单元的内容。本课例以一组乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化规律。在学生已经掌握了乘法运算的基本技能的基础上,在乘法运算中探索积的变化规律。通过这个过程的探索,学生将会经历研究问题——归纳发现规律——解释说明规律——举例验证规律四个层次的学习过程。学生将会用到观察、计算、自主探索、合作交流等学习手段,并最终发现规律,归纳与验证规律,从而有效的培养学生探索与推理的能力,让学生体会事物间是密切相关的,受到辩证思想的启蒙教育。例题的设计分三个层次:1、教材设计了一组乘法算式,引导学生在观察,计算,对比的基础上自主发现因数变化引起积的变化规律。
课堂教学设计说明前一节课学生通过推导,已初步理解和掌握了乘法分配律,但要使学生切实理解乘法分配律,必须经过反复地练习,本节课就是解决如何应用乘法分配律使计算简便,在应用的过程中,进一步加深对乘法分配律的理解.新课分为两部分.第一部分通过师生对出题,激发学生积极性,为应用乘法分配律做铺垫.第二部分是教学例6,用简便方法计算,通过老师的启发,学生经过观察,讨论找出题目的特点,总结出简便运算的方法.本节课的练习分两个层次.一个层次是讲中练,边讲边练,并在练习中不断变换题目形式,提高学生灵活运用运算定律的能力.第二个层次是总结性的综合练习.通过师生对出题使学生深刻理解乘法分配律的内涵,抓住关键,进行简算;同时对不符合乘法分配律的题目,经过讨论,修正过来,使学生对运算规律理解得更透彻.
3、个性展示。《课程标准》把发展学生的符号感作为义务教育阶段的一个重要的数学学习内容。于是在上一个环节中,我继续让学生举例,通过大量的实例,使学生发现这样的例子有很多,总也举不完,再用特定的数已经满足不了这种需要,造成了学生的认知冲突。“怎样表示出所有的例子呢?”启发学生探究新的表达方式,激起学生强烈的探究欲望。紧接着组织学生先在小组里说说自己是怎么想到这样的表达方式的,然后把用不同的符号或字母表示的式子写到黑板上,并追问“为什么可以这样表示?每一个符号或字母表示什么数?”待全部汇报完后,再把这些个性化的符号、字母表示的加法交换律和用具体的数以及语言文字表示的进行比较,让学生谈谈有什么感受?这样,就使学生从具体的情境中抽象出变化规律,发展了学生的符号感,同时使学生感受到用字母表示的优越性,还使学生获得了成功的体验。
4、这样的描述太长又难记,让学生想想加法交换律,能用什么简便的方法来表示他们的发现,并自己尝试写一下。提示:用自己喜欢的图形、字母或符号来表示这一规律。板书:(a+b)+c=a+(b+c) 这就是我们今天所学的一个运算定律 (板书:加法结合律)。(三)巩固练习我设计了三个层次的练习,而且形式多样,内容丰富,使全体同学都参与到有趣的数学学习中,又复习巩固了全课的内容。前两题是基础巩固题,是针对加法结合律的定义设计的填空和判断题。三四题是将加法交换律也放入了习题中,通过连线,选择,让学生能够区分加法结合律和加法交换律。五六题则是在刚才的习题上,提出了更高的要求,第五题是让学生自己运用简便方法计算三个数的相加。第六题则是开放题,在一个算式中,给学生两个数,一个空,让学生自己想出一个适合数来使计算简便一些。这样,我就把主动权再次交给学生,充分体现他们的主体性。
学生阅读教材第4页正文的文本,结合课前搜集到的纪律、道德与法律关系的相关资料,先在小组内讨论:你认为违反法律的后果和违反学校纪律的后果是一样的吗?再小组之间进行辩论,教师相机引导。板书:法律与纪律、道德等社会规范不同。设计意图:引导学生理解法律与纪律、道德等社会规范不同。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结本节课的主要内容,体验收获与成功的喜悦,内化提升认识与情感。环节四:布置作业,课外延伸生活中,在行使权利的同时,履行好我们的义务。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《感受生活中的法律》,下面是:法律是什么;学生说到的权利和义务;法律与纪律、道德等社会规范不同。
原告: (写明姓名或名称等基本情况)。 被告: (写明姓名或名称等基本情况)。 (当事人及其他诉讼参加人的列项和基本情况的写法,与一审民事判决书样式相同。) 本院在审理 (写明当事人的姓名或名称和案由)一案中, 告 于 年 月 日向本院提出先予执行的申请,要求 (概括写明请求的具体内容),并已提供担保(未提供担保的不写此句)。
(一)观图激趣、设疑导入 1.出示课件-情境图师:上节课我们初步学习了里程表的知识,这节课我们接着来研究里程表中的数学问题。板书课题:里程表(二)师:淘气的叔叔是出租车司机。淘气为了记录叔叔每天跑的路程,淘气在叔叔星期一早上出车时,里程表的读数是35千米。淘气记录了叔叔周一至周五每天回家时的里程表读数。(课件展示里程表)。(二)探究新知1.例1(1)师:请同学们认真观看淘气记录的叔叔的周一到周五的里程表,想一想,说一说你知道了哪些数学信息?生:我发现了叔叔周一行了160千米。 师:同学们他说找到数学信息对吗?生:160千米不是星期一的行驶里程,应该是星期一晚上里程表上的读数。 星期二里程表上的读数是350,。生:。。。。师:同学们找的数学信息非常多,非常全面。(2)小组讨论交流:淘气根据题意画了一个图,你看懂了吗?与同伴说一说。
一、定义: ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.
同学们:大家好!在这充满希望与憧憬的春天里,我首先应对你们讲些什么。我选择了很多内容,但最终还是决定先给你们讲个故事:某公司招聘一名职工,应聘者很多,最后一个其貌不扬的人被公司选中了,其他应聘者不服,就去公司问老板。老板说聘用他的原因是只有他带来了许多“介绍信”:他在门口蹭掉脚下的泥土,进办公室后随手关上门,说明他做事仔细、认真;他看到那个残疾老人,立即起身让座,表明他心地善良、体贴别人;应聘时他先脱掉帽子,回答问题干脆果断,说明他既懂礼貌又有魄力;其他人都从我故意放在地板上的那本书上迈过去,只有他俯身捡起它并放回桌上……这些不是很好的介绍信吗?把工作交给这样的人不是很让人放心吗?同学们,一滴水蕴藏着大海的本质,一束光反映了太阳的光辉,一件小事折射出一个人的修养。听了这个故事,你是否知道如何对待手中的一张废纸
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。