提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

XX年开学第一周国旗下讲话稿例文

  • 《我的房间》第一课时教案

    《我的房间》第一课时教案

    一、情景导入,引出新知师:“上节课,奇奇妙妙邀请我们去参观了他们的家。这节课,又是哪个小朋友要邀请我们去参观他的家呢?”[出示xxx的照片]师:“这节课是xxx邀请我们去参观他的家。xxx,你要带我们去哪里看一看呢?”[PPT展示xxx家的阳台、房间和网络上的花园图片]<xxx指出自己的房间>师:“这节课,我们和xxx一起去参观房间。”[出示课题:10.我的房间]<学生跟读课题>二、循序渐进,程序教学(一)学习词语:房间[出示图片:房间]“xxx的房间是什么样子的?”“我们请xxx来介绍一下自己的房间。”(教师带领xxx说一说自己的房间有什么:大床、小床、电视)“这个有床、有电视,可以睡觉休息的地方就是房间。”[出示词卡:房间]

  • 牛顿第一定律教案 3篇

    牛顿第一定律教案 3篇

    ①他的观点来源于伽利略的理想实验。  ②观点:物体不受力时,将保持自己的速度永远运动下去。  3.牛顿第一定律:  ①来源于牛顿第一定律实验。  ②定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

  • 第四单元“神话故事”教案

    第四单元“神话故事”教案

    (1)了解故事的起因、经过、结果,感受神话中的人物形象。这是本单元的语文要素,引导学生体会神话永久的魅力,人类神话时代飞腾的幻想。引导学生通过对课文的整体把握,和对重点词句的理解,感受到古代神话故事中人物形象,性格特点。能引导学生根据想象描写人物,感受神话故事中人物的神奇。盘古雄伟、高大的形象;精卫的坚强不屈、坚韧不拔的性格;普罗米修斯的勇敢与献身精神;女娲的勇敢、善良的品质,跃然在纸上,展现在我们面前。教学时注意引导学生发现神话故事的特点,感受神话的神奇。

  • 高一国旗下讲话:进入最好状态

    高一国旗下讲话:进入最好状态

    各位老师、同学们,大家好:今天我国旗下讲话的题目是《进入最好状态》首先,我想在这里和大家分享哈佛大学的训言:此刻打盹,你将做梦;而此刻学习,你将圆梦。很多人都会有“明日复明日”的想法,懒惰之心人人都有,而关键在于如何对待懒惰。九年寒窗苦读,我们怀着激动的心情跨进了二中的校门。在这里,我们吸纳前人的智慧精华,接收人文道德的洗礼。所以我们应当珍惜这个难得的机会,把握青春时光,而不是任由懒惰支配自己。中学时代是人生中最精彩的时光,而高中三年是这段时光中最璀璨的一抹。相信即将走进高考考场的学哥学姐们定能取得优异的成绩,再创辉煌。作为高一的我们,还有一年多的时间也将升入高三。我们必须清楚,高考已经不再遥远。以前,无论你是否逃避过,现在,你必须勇敢面对。

  • 防震自救国旗下讲话发言稿

    防震自救国旗下讲话发言稿

    。我国东汉时期有位杰出的大科学家名叫张衡,他于公元132年发明了世界上第1台地动仪,张衡制造的这台地动仪,相当灵敏准确。公元138年的1天,地动仪精确地测知距离洛阳500多公里的陇西发生地震,可见精密程度达到了相当高的水平。欧洲在1880年才制造出类似的地震仪,但在时间上晚了1700多年。当代我国最优秀的地质学家李四光、翁文波等人,经过长期的科学实践,认为地震等自然灾害是完全可以预测的,截止目前,运用李四光的预测理论,我国已经成功地预测了地震活跃带上14次,6级以上的地震其中的10 次,准确率达70%,尽管我们的祖先非常优秀,现在的科学进展也了不起。但是由于地质构造非常复杂,加上地震类型复杂多样,人类的科学认识水平,到目前为止,还不能每次都准确地提前探测出地震,即使是世界科学发达的国家美国也做不到。所以现在人们虽然实现了可上9天揽月的美梦,

  • 关于开展扣好人生第一粒扣子活动心得体会八篇

    关于开展扣好人生第一粒扣子活动心得体会八篇

    自打我上小学,妈妈就让我养成坚强、独立的性格,自己的事自己做。  那是一个飘着毛毛细雨的早晨,我早早地出门去买早餐。对于平常吃惯了面包牛奶的妈妈,我多么想给她一个惊喜——为她买一碗热腾腾的面。我买完面便匆匆往回赶。  我小跑着上楼,希望快点把这个惊喜带给妈妈。突然,我的脚下打了个滑,不但我自己摔了个狗啃泥,而且连滚烫的面也泼洒了我一手。我被烫得哇哇大哭,哭声引来了妈妈,我哭丧着脸对妈妈诉苦,满以为会得到一点同情与怜爱,可妈妈只是简单地交代了几句,便又递给我钱,让我重新去买一份。我大为震惊:妈妈怎么那么狠心呀?何况我又是个女孩,她居然都不安慰我一下,我到底是不是她亲生的?我忍着疼痛和怒火接过妈妈给我的钱,又去买了一碗面。

  • 人教版高中政治必修1第十一课 经济全球化与对外开放教案

    人教版高中政治必修1第十一课 经济全球化与对外开放教案

    材料说明了什么?探究二:材料分析:2005年12月13日至18日,WTO第六次部长级会议在香港召开。会议经过谈判通过了《部长宣言》,规定发达成员和部分发展中成员2008年前向最不发达国家所有产品提供免关税、免配额的市场准入;发达成员2006年取消棉花的出口补贴, 2013年年底前取消所有形式农产品出口补贴。材料体现了世界贸易组织在国际经济贸易领域中发挥哪些作用?探究三:P97:A、这些图示,反映出我国利用外资哪些特点?。B、能为我国提高外资利用水平提出些建议吗?探究四:材料展示:我国是人口众多的发展中大国,全国居民每天消费总额达到37亿元。每天消费粮食75万吨,相当于一个县级商品粮基地的全年产量;每天消耗猪肉6万吨,食油1万吨,糖1.6万吨,鲜蛋1.8万吨。每天购买杂志600多万册,报纸5000多万份,需要400量中型载货汽车才能装载。

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

  • 直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    直线的一般式方程教学设计人教A版高中数学选择性必修第一册

    解析:当a0时,直线ax-by=1在x轴上的截距1/a0,在y轴上的截距-1/a>0.只有B满足.故选B.答案:B 3.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:设所求直线方程为x-2y+c=0,把点(1,0)代入可求得c=-1.所以所求直线方程为x-2y-1=0.故选A.4.已知两条直线y=ax-2和3x-(a+2)y+1=0互相平行,则a=________.答案:1或-3 解析:依题意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直线,则m2-3m+2与m-2不能同时为0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • (10篇)XX公司市场开发部工作总结汇编

    (10篇)XX公司市场开发部工作总结汇编

    在进行产品开发的同时,我也对公司非门票经营产业结构进行了全面而深刻的剖析。产业结构单一,竞争中不能形成绝对优势,消费形不成规模等等问题是制约华清池非门票经营的一道壁垒。在公司确定以“项目发展带动经营创收”的基本思路,在中心主任的帮助下,我和产品开发部成员一起,积极策划梨园、龙石舫等闲置场所的利用方案,一是经过多处实地查看、沟通,将梨园定位为集梨园文化展览、旅游纪念品消费和高端商务会所与一体的综合性消费场所;二是组织完成了梨园设计招投标工作;三是完成了梨园内部装饰拆卸和基础改造咨询、手续办理等工作;在龙石舫等其他闲置场所利用方面,一是通过在龙石舫一周调研,了解龙石舫消费人群构成,最终确定以散客目标人群,并确定改造为休憩、观光为一体的西式饮品消费场所,目前基础改造正在进行,内部装修方案正在进行方案修改。二是通过总结经营实践中问题和与多次沟通、了解,确定将西配殿定位为长恨歌纪念品专营店,目前西配殿改造方案正在进行二稿修改。三是拟定了白莲榭、龙吟榭、长生殿等场所的经营概念性思路策划方案草拟稿。四是完成了华清池非门票经营三年规划,为公司非门票经营提供了思路。

  • 人教版高中政治必修3第一课文化与社会精品教案

    人教版高中政治必修3第一课文化与社会精品教案

    (2)历史课本中历朝历代的文化发展。(3)政治生活中关于综合国力竞争的相关知识。(4)了解文化产业的发展,深入体会知识经济、文化经济现象。五、【方法点津】:(1)坚持理论联系实际的方法,感悟文化现象,理解文化内涵,分析文化的作用,增强文化学习的自觉性。(2)自学探究。以课本的简单提示为线索,深入探究文化与经济、政治的相互交融,探究文化在综合国力竞争中的地位和作用。(3)集体讨论。针对当前国际竞争的实质,探讨我国应如何发展文化产业、发展文化生产力、增强文化竞争力;讨沦为更好地应对文化竞争,作为中学生目前应做好哪些准备。六、【课文导语】:文化,一个我们十分熟悉的词汇。然而“熟知并非真知”。有人说,文化是知识;有人说,文化是艺术。究竟什么是“文化”?只要在社会生活中细细体味,我们就能真切地感悟“文化”的内涵与文化的力量。

  • 空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    空间向量基本定理教学设计人教A版高中数学选择性必修第一册

    反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.

  • 点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    点到直线的距离公式教学设计人教A版高中数学选择性必修第一册

    4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.

  • 两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    两点间的距离公式教学设计人教A版高中数学选择性必修第一册

    一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.

  • 倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    倾斜角与斜率教学设计人教A版高中数学选择性必修第一册

    (2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).

  • 两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    两条平行线间的距离教学设计人教A版高中数学选择性必修第一册

    一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]

  • 两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    两直线的交点坐标教学设计人教A版高中数学选择性必修第一册

    1.直线2x+y+8=0和直线x+y-1=0的交点坐标是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程组{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交点坐标是(-9,10).答案:B 2.直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k的值为( )A.-24 B.24 C.6 D.± 6解析:∵直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,可设交点坐标为(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故选A.答案:A 3.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则点P的坐标为 . 解析:∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,联立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴点P的坐标为(3,3).答案:(3,3) 4.求证:不论m为何值,直线(m-1)x+(2m-1)y=m-5都通过一定点. 证明:将原方程按m的降幂排列,整理得(x+2y-1)m-(x+y-5)=0,此式对于m的任意实数值都成立,根据恒等式的要求,m的一次项系数与常数项均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

  • 直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    直线的点斜式方程教学设计人教A版高中数学选择性必修第一册

    【答案】B [由直线方程知直线斜率为3,令x=0可得在y轴上的截距为y=-3.故选B.]3.已知直线l1过点P(2,1)且与直线l2:y=x+1垂直,则l1的点斜式方程为________.【答案】y-1=-(x-2) [直线l2的斜率k2=1,故l1的斜率为-1,所以l1的点斜式方程为y-1=-(x-2).]4.已知两条直线y=ax-2和y=(2-a)x+1互相平行,则a=________. 【答案】1 [由题意得a=2-a,解得a=1.]5.无论k取何值,直线y-2=k(x+1)所过的定点是 . 【答案】(-1,2)6.直线l经过点P(3,4),它的倾斜角是直线y=3x+3的倾斜角的2倍,求直线l的点斜式方程.【答案】直线y=3x+3的斜率k=3,则其倾斜角α=60°,所以直线l的倾斜角为120°.以直线l的斜率为k′=tan 120°=-3.所以直线l的点斜式方程为y-4=-3(x-3).

上一页123...115116117118119120121122123124125126下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!