这节课的教学内容是在学生学习掌握了圆和圆柱的相关知识的基础上而安排的。认识圆锥,首先要了解它的特征。因此教材把它安排在这一部分内容的第一节,为下面的学习做好铺垫。由于圆柱与圆锥的知识是密切相关的,因而教材把圆锥的认识安排在圆柱的认识之后,为学习圆锥的特征以及体积起到了一个桥梁的作用。二、说学情我所教学班级的学生是山区的孩子,经过前面的学习他们的主观性和能动性已经有较大的提高,能够有意识地主动探索未知世界。同时,他们的思维能力、分析问题的意识和能力也有明显的提高,也有一定的动手操作能力。但抽象逻辑思维在很大程度上仍然靠感性经验支持,加上他们生活在山区,对新生事物的见识面相对较窄,所以在教学时适宜恰当地运用远程教育资源,既能创设教学情境,又能将抽象的知识直观化,更加直观地体验感知圆锥的特征。
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的,圆柱的体积是圆锥的3倍。第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= Sh。第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
四、教学过程1.创设情境 导入课题同学们:课前,我让大家在生活中寻找圆柱,你们找到了吗?谁愿意来展示一下。李老师也找到一些图片,我们一起来欣赏:(多媒体展示生活中的圆柱图片)生活中的圆柱可真多呀!为什么要把它们要设计成圆柱形呢?学生可能会说:因为圆柱没有棱角,很光滑,所以栏杆、柱子要设计成圆柱形;因为圆柱可以滚动,所以压路机、刷墙滚子设计成圆柱形……同学们,你们说得很好,圆柱有这么广泛的用途,今天让我们进一步从数学的角度来认识圆柱。(板书“圆柱的认识”)2.自主学习 初步认识接下来,我让学生结合自带的圆柱自学教材第10—11页上的内容。指导学生学会看书,从书本上获取知识是学习数学的重要方法。因此,在感性认识圆柱的基础上,我让学生通过自主阅读获取圆柱各部分的名称。 同学们:通过自学,你们都获取了哪些知识?请拿着手中的圆柱来说一说?
多年的小学教学经验告诉我:小学高年级的学生已有一定的自学能力,关键是看我们设置的情景和学生的生活是不是紧密联系,是不是唤起了学生的已有表象,并不和使用多种媒体有绝对联系。所以在学习例题中我引导学生自主探讨,从中发现问题,提出问题,最后独立解决问题,从而训练学生数学语言表达能力,发展学生的创造性思维。⒋质疑问难。㈣新知总结对上面所学知识,教师引导学生作一次归纳总结,让学生明确要求圆周长时,必须设法求得圆的直径或半径。这样使学生对求圆周长有明确的认识,进一步深化重点。㈤新知运用国家教委加强与改进小学数学教学的意见中提出:基础训练是使学生融会贯通地掌握知识,形成熟练技能和发展智力的重要手段。所以在本节练习中我以基础练习为主,适当补充了提高练习。
学生的学习活动是一个生动活泼而富有个性的过程,为了把学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学的知识和方法解决实际问题。我又设计了以下练习题:1、脑筋乐园:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为50米的圆吗?2、(1)应用圆的知识解释下列现象,并写出来。为什么井盖也得做成圆形的?人们在围观的时,为什么会自然地围成圆形?(2)搜集有关圆的资料。贴到教室的数学角上,大家共享。3、画出各种大小、不同颜色的圆,组合出一幅美丽的图画。(设计意图)将学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学知识和方法解决实际问题。(我认为把本句提前,这里删去,这样显得更连贯)(五)全课总结1、让学生谈收获,进行自我评价。2、我对整节课进行知识要点归纳和对学生学习情况进行评价。(这样总结,我注重学生的自我评价,自我体验和个性发展。即学生情感的体验和收获)(我认为蓝色字那句可删去)
本节课的设计是以教学大纲和教材为依据,遵循因材施教的原则,坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。本节课采用教具辅助教学,旨在呈现更直观的形象,提高学生的积极性和主动性,并提高课堂效率。2、学法研究“赠人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识,首先教师应创造一种环境,引导学生从已知的、熟悉的知识入手,让学生自己在某一种环境下不知不觉中运用旧知识的钥匙去打开新知识的大门,进入新知识的领域,从不同角度去分析、解决新问题,通过基础练习、提高练习和拓展练习发掘不同层次学生的不同能力,从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
将一个圆分成三个大小相同的扇形,你能计算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴交流设计意图:通过引导学生根据圆心角与圆心角的比例确定扇形面积与整圆的面积关系为后面学习扇形面积公式做铺垫,体现知识的延续性。(六)、巩固练习.如图,把一圆分成三个扇形,你能求出这三个扇形的圆心角吗?若圆的半径为2,你能求出各部分的面积吗?(七)、课堂小结学完这节课你有哪些收获?设计意图:通过小节让学生对所学知识进行梳理,使所学知识能合理地纳入自身的知识结构。(八) 布置作业:中等学生:P125. 1优等生: P125. 2,3我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样即使学生掌握基础知识,又使学有余力的学生有所提高,从而达到拔尖和“减负”的目的。
设计意图这一组习题的设计,让每位学生都参与,通过学生的主动参与,让每一位学生有“用武之地”,深刻体会本节课的重要内容和思想方法,体验学习数学的乐趣,增强学习数学的愿望与信心。4.回顾反思,拓展延伸(教师活动)引导学生进行课堂小结,给出下列提纲,并就学生回答进行点评。(1)通过本节课的学习,你学会了哪些判断直线与圆位置关系的方法?(2)本节课你还有哪些问题?(学生活动)学生发言,互相补充。(教师活动)布置作业(1)书面作业:P70练习8.4.41、2题(2)实践调查:寻找圆与直线的关系在生活中的应用。设计意图通过让学生课本上的作业设置,基于本节课内容和学生的实际,对课后的书面作业分为三个层次,分别安排了基础巩固题、理解题和拓展探究题。使学生完成基本学习任务的同时,在知识拓展时起激学生探究的热情,让每一个不同层次的学生都可以获得成功的喜悦。
(1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.
情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
一、教材分析《圆柱的表面积》是九年义务教育小学数学六年级下册(人教版)第21-22页例3例4,第21-22页“做一做”,练习四的教学内容。这部分内容是在学生已经探索并掌握圆柱的基本特征的基础上教学的。同时,此前对圆面积公式的探索以及对长方体特征和表面积计算方法的探索也为了学习本课内容奠定了知识的基础。教材设置了两个例题。例3主要引导学生通过动手操作探索圆柱侧面积的计算方法。然后,通过例4引导学生利用圆柱表面积的计算方法解决实际问题。教材这样安排,意在让学生经历圆柱侧面积、表面积计算方法的推导过程,理解这些方法的来源,通过自己的操作,观察、比较、推理、归纳等经历知识形成的过程,完善关于几何形体的知识结构,丰富学生“空间与图形”的学习经验,形成初步的空间观念,为今后进一步学习形体知识打下基础。
第一个板块:观看视频,导入主题首先播放“我的梦中国梦”公益节目视频,让学生通过观看视频认识梦想,感受到梦想的重要性。然后在歌曲《梦想》的旋律中引出课题。这种以视频创设情境的导课方式,可以抓住学生的注意力,激发学生的好奇心,启发学生的想象力,使学生产生浓厚的兴趣。第二个板块:识“梦”1、畅谈”我的梦”在这一环节我设计了这样的问题:你的梦想是什么?学生畅所欲言。谈论自己的梦想是学生们所喜欢的,这样可以激起学生的学习兴趣,调动他们参与交流的积极性,从而让他们在交流中思考,明确自己的梦想。2、感受“学校梦"首先请学生代表介绍学校举办黄海潮的盛况、校足球运动的开展情况以及校足球队取得的佳绩,通过-个个亲身经历的学校故事,让学生产生情感共鸣,从而感受到:我们的学校也在追梦,在所有老师和学生的艰辛努力下,取得了很多耀眼的成绩。
大班上学期的幼儿年龄在5岁左右,他们想象力丰富,思维活跃。本班幼儿在以往类似的语言活动中,大多能在老师的引导下理解作品的主要内容,并乐意用自己喜欢的方式创造性的表现文学作品。但是在口语表达方面还是有点欠缺,在集体中发言时态度还是有点拘谨。语言表达不够流畅,有时表现为用词不太恰当。因此本次活动我注意引导幼儿积累一些丰富的词汇,在活动中努力为每个幼儿提供在集体面前大胆表现自己的机会。真正做到让孩子有话可说,有词可用。在口语表达方面有新的进步和突破。
活动目标: 1、培养幼儿热爱祖国、热爱家乡的情感,珍惜每一份资源,做到不浪费,养成良好的环境意识。 2、培养其口头表述能力,通过听故事,能独立的完整的将大意概述出来。 3、了解纸的由来,学会利用纸,包括废物利用和循环利用。 活动准备: 各种各样的纸、剪刀等,造纸故事,造纸图、蔡伦图、颜料、桶。 活动过程: 一.谜语导入:引出“纸”。 “有个用具它不简单,可以写字,还可以把数算。 订起来是一本书,拆开来是一张张, 它是谁,我们都来猜猜看。”
2、提高左右手动作的灵活性、协调性。 【活动准备】 画有水果轮廓的涂画纸若干、苹果剪纸若干、玉米粒,自制各种喂小动物玩具、积木、自制小手镯每人一副(黄、蓝两色) 【活动过程】一、教师边念《小小手》儿歌边做动作,导入活动。 小朋友,现在我给大家念个儿歌听好吗?“拍拍手、拉拉手,我们都有一双手,穿衣服、扣纽扣,洗脸、刷牙和梳头,画画也要用小手,小小手、小小手,真是我的好朋友。”瞧!我的小手真能干,你们的小手会做些什么事情呢?幼儿互相讨论交流并讲述小手能做什么事情。
教学过程:(一)导入:课前放《爱的奉献》歌曲,同时不断播放一些有关“爱”的主题的图片,渲染一种情感氛围。师说:同学们,谁能说说这组图片的主题应该是什么?生(七嘴八舌):母爱,不对是亲情……是友情、还有人与人互相帮助……那组军人图片是说保卫国家,应该是爱国……那徐本禹和感动中国呢?…………生答:是关于爱的方面师说:不错,是关于爱的方面。那么同学们,今天就以“爱的奉献”为话题,来写一篇议论文如何?生答:老师,还是写记叙文吧。生答:就是,要不议论文写出来也象记叙文。师问:为什么?生答:老师,这个话题太有话说了,一举例子就收不住了,怎么看怎么象记叙文。生答:就是,再用一点形容词,就更象了。众人乐。师说:那么同学们谁能告诉我,为什么会出现这种问题?一生小声说:还不是我们笨,不会写。师说:不是笨,也不是不会写,你们想为什么记叙文就会写,一到议论文就不会了,那是因为同学们没有明白议论文中的记叙与记叙文中的记叙有什么不同,所以一写起议论文中的记叙,还是按照记叙文的写法写作,这自然就不行了。那好,今天我们就从如何写议论文中的记叙讲起。
2、教育幼儿要保护好自己的鼻子。 3、培养幼儿积极运用感官的习惯。 活动准备 不透明的容器,分别装有香水、大蒜、麻油、醋、酒、橘子等,最好每组一套。 活动过程 1、出示大象的木偶。小朋友你们说大象的鼻子有什么用处? (大象的鼻子能卷东西) 出示狗的木偶。小朋友,狗的鼻子又有什么用处? (狗的鼻子最灵)。 2、讨论人的鼻子有什么用处。 ⑴、动物的鼻子有这么大用处,那么我们人的鼻子有什么用呢?(呼吸、嗅气味) ⑵、桌上有许多小瓶子,用我们的小鼻子来闻闻,看瓶子里装的是什么。 ⑶、说说你最喜欢什么气味,不喜欢什么气味,为什么?你以前还闻过哪些有气味的东西?
活动目标:1、了解植物的生长过程,知道各种植物的种子是不同的,并能区分。 2、让幼儿了解植物生长离不开阳光、空气和水。 3、培养幼儿主动探索的习惯和体会成功的喜悦,激起下一次探索的欲望。 活动准备:1、事先搜集有关植物生长的资料和图片。 2、准备各种植物的种子若干。 3、花盆、纸笔若干。 活动过程: 一、让幼儿说说植物是怎么来的?请哦跃然把自己的想法说出来。 二、幼儿讨论:植物为什么会长大?怎样才会长大? 三、幼儿进行小实验:植物无根和有根实验。请幼儿看看实验中哪种植物没有死,了解根的作用。 四、幼儿做种植实验:了解植物的生长过程。
1、激发幼儿探索的兴趣,在感知蜡烛燃烧现象的过程中体验探索的乐趣。2、培养幼儿的观察力和动手操作的能力。3、知道蜡烛燃烧时会发光、发热、燃烧时需要空气中的氧气。 【活动准备】 蜡烛若干个,主蜡烛6个,大、小杯子各32个、盘子若干个、瓶子若干各个、打火机、火柴、彩色颜料。 【活动过程】1、将教室内的灯关掉,告诉小朋友停电了,教室里这么黑,我们应该用什么方法来照明?(手电筒、火柴、打火机、蜡烛)2、今天我这正好有蜡烛,我们可以用什么把蜡烛点燃?(火柴、打火机)我用打火机把蜡烛点着。点蜡烛的时候注意将蜡烛稍微倾斜一下,小心烫到手,然后把蜡烛放到桌子上。现在,小朋友的桌子上也有一些小蜡烛,我把点燃的大蜡烛放在你们的桌子上,请小朋友把自己的小蜡烛点燃。我们的教室亮起来了,刚才教室还黑黑的,为什么蜡烛点燃以后教室亮起来了呢?(因为燃烧的蜡烛会发光) (1)呀!来电了。现在我们不需要蜡烛了,那我们用什么方法将这些蜡烛熄灭呢?(用嘴巴可以把蜡烛吹灭、用扇子扇也可以将蜡烛扇灭、把蜡烛拿到外面让风一吹也会熄灭、把蜡烛放在水里就熄灭了、用沙子、用土) (2)我这有一个玻璃瓶,我想用这个玻璃瓶能将蜡烛熄灭,你们说我能做到吗?我该怎么做?请小朋友帮我想个办法。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。