设问:你怎么看待这个问题的?(这是达尔文没有想到的,是有人利用了达尔文的学说,科学应该与其区分开来,但是科学家在研究时,既要做到为追求真理不断探索,又要有一定的人文精神,比如我们只有以人为本,才能找到解决当今社会面临的诸如环保、战争、饥荒等问题的途径,才能构建防止核物理技术、克隆技术、信息技术、生物技术、太空技术等可能对人类造成不可逆转的破坏作用的思想基础、决策机制和社会条件。更重要的是社会和国家应该对此有足够的认识,正因为此,所以现在当一项科学发明出台后,就会有一些法律出台,限制其可能的非人道用途。但是这些影响应不成为我们进行科学探究的阻碍。)(3)科学与宗教的斗争设计意图:再次引导学生认识,科学的探索永无止境,同时也再次认识宗教和科学理论产生的原因。材料1:1972年,美国加利福尼亚教育部竟明文规定,中学生物学课本除进化论外,必须还有神创论的内容,而且两者的页数要各占一半。
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
因徐校长退休,上个星期我来到了学校,又成为了东山实验小学的一员,担任校长工作。我姓吴,以后大家可以叫我吴校长或吴老师。在13年前,我就是我们学校的数学老师。在这里我工作了整整20年,我的儿子也是在本校毕业。这是一所了不起的小学,是XX省首批办好的老牌实验小学,也是XX省“模范学校”。这是一所办学近200年的学校,多少年来为中学输送了一批批优秀的毕业生,为生国家培养了一大批优秀的人才,院士、科学家等数以百计。我的儿子后来也考取了北京大学,现在国家公派在国外留学。我说儿子并不是自我夸耀,而是想告诉同学们一点,能在东山实验小学学习与工作是幸福的、光荣的。因为,东山实验小学有一个个关爱你们,为同学们的获得良好的学习成长、优良的品德形成,健康的身心发展的敬业、爱岗、乐于奉献的老师。在此我建议,让我们用最热烈的掌声向老师们表示最衷心的感谢!
知识与技能To teach the words in the house : sofa table chair box cupboard shelf . Pron. on in under near
亲爱的孩子,高中生活,特别是冲刺阶段,是一个极其艰辛的过程,在一次次考试的历练中,在亮到深夜的台灯下,在你们疲惫、失落的眼神里,爸爸、妈妈真切地感受着你们的艰辛和坚韧。也许我们曾经的担心、焦虑、唠叨给你们添加了压力,但这就是父母啊,一切都是为了孩子!其实,父母因为有你们这样出色的孩子已经深感自豪。孩子们,金榜题名固然重要,但在高中阶段所收获的那一份刻骨铭心的历练、学会驾驭人生、学会坚韧、学生拼搏的素养,这些都将成为我们终生受用的宝贵财富。如果对高考有这样的理解,这样的把握,我相信无论你们在怎样的状况下,都会义无反顾,信心百倍,马到成功。希望你们能坚守“最初的梦想”,练就“隐形的翅膀”;坚定信心,坚忍不拔,毕竟天道酬勤,不必创造奇迹,但求无愧于心!
在这阳光明媚、万里无云的日子里,我们迎来了本学期第一次家长会。能作为学生代表上台发言,我感到十分荣幸。同时我代表全体同学,向你们表示热烈欢迎! 我叫xx,是一个身高一米五六的小伙子。本学期身为班长的我,能够以身作则,带领好我的这一批班干部,管理好班级一周各方面的常规。我的学习成绩不错,每次考试都能在90分以上;九十五分对于我来说也是“常客”。由于取得了这一点点小成绩,有许多同学总会和我开玩笑:“你的成绩这么好,有没有什么‘秘密’和我们分享分享?”这时,我总会微微一笑道:“其实没有什么‘秘密’可谈,我在家里花的时间和你们是一样的!”我觉得,之所以我的成绩这么好,主要在于我上课能够认真听讲。 虽然我在班上坐在倒数第二排,但是我的眼睛总是能跟着老师转,思维能跟着老师走。只要上课能认真听讲,课下的作业就可以迎刃而解了。由于我上课能认真听讲,在家里,作业多的时候,一个小时就可以写完了;作业少的时候几十分钟就可以解决了。剩下的时间,我总会捧起一本好书,细细品读其中的精华,或者下楼玩一小会儿,放松放松身心。我觉得,新世纪的少年要德、智、体、美、劳、各方面全面发展。我在这方面就挺不错的。我不仅在校内表现出色,在校外,英语、奥数、象棋、作文等都是我的强项。特别是象棋,我曾经一路过关斩将,取得了全省第三名的好成绩。 当然,取得了这么多好成绩,我觉得归功于三位主科老师以及家长们。三位主科老师在学校里教会我学习,并告诉我人生哲理;家长们在家里辅导我学习,督促我养成好习惯,改正坏习惯。他们都功不可没。 “路漫漫其修远兮,吾将上下而求索”。今后的日子还很漫长,我一定要加倍努力,不辜负老师家长们对我的期望!谢谢大家!
以诚以信,交一份无怨无悔的人生考卷各位老师、同学们:今天我讲话的题目是《以诚以信,交一份无怨无悔的人生考卷》,校长期末考试前后国旗下讲话稿。今天的这次讲话是第一次国旗下讲话,也是本学期的最后一次国旗下讲话,恰从今天开始,反映我校一学期教学成果的期末考试将逐步全面展开。在教学成果即将归仓的时候,我真诚地祝愿,祝愿老师们一学期汗水的结晶是丰收的硕果;我殷切地期望,期望同学们半学年心血的凝聚是成功的甘甜!在新春佳节将至的时候,我热忱地祈祷,祈祷我们的老师、我们的同学、我们的集体在新的一年里将更加的朝气蓬勃、奋发有为!岁末年初,举首回眸,心潮难平,感慨良多!我深深地觉得,觉得时光如电、岁月有痕,时间,它是一位公正而有心的天使,她稍纵即逝地匆匆来去,将给予别人的那份光阴也一秒不少地给予了你,但在她匆匆来去的足印中,却有着精确而公道的记录:记录着奋斗者的成功与欢乐,耕耘者的艰辛与收获,受益者的感动与思虑;记录着颓废者的叹息与悲观、偷安者的庸碌与悔恨,放纵者的执迷与教训……我想,本次期末考试的结果将能够如实地为我们的教学情况反映出这种精确的记录。
青年应该勇于放飞梦想,追逐梦想。周总理的“为中华之崛起而读书”和马丁·路德·金的“我有一个梦想”等启示我们:年轻人绝不能缺少梦想。梦想是什么?就是有目标。我一直相信,目标比努力更重要。有个故事是这么说的:有个人好不容易揽到了一个工程,他便加班加点、认认真真的施工。完工后,不但没赚到钱,还挨了一顿揍。什么原因?人家让他挖一口井,他把图纸看倒了,盖了个烟囱。“磨刀不误砍柴工。”没有明确目标、找不准方向,就急于出发、急于求成,最终的结果很有可能就是南辕北辙,无功而返。我们伟大的中国梦也是有具体目标的,作为青年一代的我们,是实现目标的生力军,所以我们应该追梦,但更要正确的追梦。
青年应该勇于放飞梦想,追逐梦想。周总理的“为中华之崛起而读书”和马丁·路德·金的“我有一个梦想”等启示我们:年轻人绝不能缺少梦想。梦想是什么?就是有目标。我一直相信,目标比努力更重要。有个故事是这么说的:有个人好不容易揽到了一个工程,他便加班加点、认认真真的施工。完工后,不但没赚到钱,还挨了一顿揍。什么原因?人家让他挖一口井,他把图纸看倒了,盖了个烟囱。“磨刀不误砍柴工。”没有明确目标、找不准方向,就急于出发、急于求成,最终的结果很有可能就是南辕北辙,无功而返。我们伟大的中国梦也是有具体目标的,作为青年一代的我们,是实现目标的生力军,所以我们应该追梦,但更要正确的追梦。
(一)观图激趣、设疑导入 师:同学们,今天和老师一起完成一个知识大比拼的游戏,(PPT课件出示)准备好了吗?1、填空。15∶3=( )∶( )2∶3=( )÷( )0.2=( )∶2=( )÷62、根据比例的基本性质,把下列各比改写为乘法等式。3:8=15:40 x:4=1:2生:准备好了。师:现在我们开始。师:今天和老师学习怎样解比例。(板书课题:解比例)【设计意图】这种方法的导入,让学生更快、更集中注意力奔向主题,没有渲染的成分,简单实用。(二)探究新知1、自学解比例的意义师:阅读教材第42页,理解什么叫做解比例。生:求比例中的未知项叫做解比例。教师板书:求比例中的未知项叫做解比例。2、学习例2,应用比例的基本性质解比例。(1)出示例2的PPT课件。法国巴黎的埃菲尔铁塔高度约320 m。北京的世界公园里有一座埃菲尔铁塔的模型,它的高度与原塔高度的比是1∶10。这座模型高多少米?(2)理解题意,弄清模型的高度∶原塔高度=1∶10。师:同学们,你是怎样理解题目中1∶10的?生:题目中告诉我们1∶10是埃菲尔铁塔模型的高度与原塔高度的比。师:你能根据题意写出比例关系式吗?生:根据题意列比例关系式:模型的高度∶原塔高度=1∶10。师:这个关系式用数字该怎样表示?生:老师,在这个比例中我只知道三个数字,模型的高度的数量我不知道是几呀?师:这位同学观察得很仔细,哪位同学愿意帮助他解决这个问题?生:老师我想用字母x代替模型高度的数量,您看可以吗?师:好的,你的想法非常的好,也很正确!师:题目中告诉我们原塔高度是多少?生:320 m。
一、本节内容在教材中所处的地位和作用:本单元是在学生理解了四则运算的意义和学会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,是学生又一次接触初步的代数思想,这既是对所学四则运算意义和数量关系的进一步深化,又是为今后学习代数知识作准备,在知识衔接上具有重要作用。而这一节恰好在这一单元之中起着承上启下的作用。二、 教学目标:1、在具体的活动中,体验和理解等式的性质,会用等式的性质解简单的方程。2、结合有关黔金丝猴的数量情况,对学生进行保护珍稀动物方面的教育。3、培养学生的观察、讨论、推理、合作交流能力。三、重点难点:重点:解简单方程、用方程解决问题。因为方程知识与现实生活联系比较紧密,同时是今后学习代数知识的基础,所以把解简单方程作为本节重点。
教学新课1.教学例2。出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。2.教学例3。出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。3.教学“试一试”。提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。4.小结方法。提问:你认为根据比例的基本性质要怎样解比例?巩固练习1.做“练一练”。指名四人板演。其余学生分两组,每组两道题,做在练习本上。
首先,学生阅读教材第74 页,教师引导学生交流:塑料垃圾危害这么大,我们能完全不使用塑料制品吗?如果完全不使用塑料制品, 我们的生活会变成怎样呢?生活中我们离不开塑料制品,那要怎样合 理使用呢?板书: 减少塑料袋的使用量,尽量使用塑料制品的替代品。然后, 结合课前调查和收集到的有关塑料制品的替代品,先小组讨论交流:在生活中有哪些塑料制品的替代品呢?再全班汇报交流, 教师相机引导。设计意图:引导学生了解生活离不开塑料制品,但要合理使用, 减少塑料袋的使用量,尽量使用塑料制品的替代品。环节三:课堂小结,内化提升 学生谈一谈学习本节课的收获,教师相机引导。 设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
还有其他解法吗?从中让学生体会解一元一次方程就是根据是等式的性质把方程变形成“x=a(a为已知数)”的形式(将未知数的系数化为1),这也是解方程的基本思路。并引导学生回顾检验的方法,鼓励他们养成检验的习惯)5、提出问题:我们观察上面方程的变形过程,从中观察变化的项的规律是什么?多媒体展示上面变形的过程,让学生观察在变形过程中,变化的项的变化规律,引出新知识.师提出问题:1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.
1.上述演示中,题目中的哪些项改变了在原方程中的位置?怎样变的?2.改变的项有什么变化?学生活动:分学习小组讨论,各组把讨论的结果上报教师,最好分四组,这样节省时间.师总结学生活动的结果:-2x改变符号后从等号的一边移到另一边。师归纳:像上面那样,把方程中的某项改变符号后,从方程的一边移到另一边的变形叫做移项.这里应注意移项要改变符号.(三)理解性质,应用巩固师提出问题:我们可以回过头来,想一想刚解过的方程哪个变化过程可以叫做移项.学生活动:要求学生对课前解方程的变形能说出哪一过程是移项.对比练习: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3学生活动:把学生分四组练习此题,一组、二组同学(1)(2)题用等式性质解,(3)(4)题移项变形解;三、四组同学(1)(2)题用移项变形解,(3)(4)题用等式性质解.师提出问题:用哪种方法解方程更简便?解方程的步骤是什么?(答:移项法;移项、化简、检验.)
探究点三:列一元一次方程解应用题某单位计划“五一”期间组织职工到东湖旅游,如果单独租用40座的客车若干辆则刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.(1)该单位参加旅游的职工有多少人?(2)如同时租用这两种客车若干辆,问有无可能使每辆车刚好坐满?如有可能,两种车各租多少辆?(此问可只写结果,不写分析过程)解析:(1)先设该单位参加旅游的职工有x人,利用人数不变,车的辆数相差1,可列出一元一次方程求解;(2)可根据租用两种汽车时,利用假设一种车的数量,进而得出另一种车的数量求出即可.解:(1)设该单位参加旅游的职工有x人,由题意得方程x40-x+4050=1,解得x=360,答:该单位参加旅游的职工有360人;(2)有可能,因为租用4辆40座的客车、4辆50座的客车刚好可以坐360人,正好坐满.方法总结:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程再求解.
先让学生自己总结,然后互相交流,得出结论。解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式。解题时,要灵活运用这些步骤。板书:解一元一次方程一般步骤:1、 去分母-----等式性质22、 去括号----去括号法则3、 移项----等式性质14、 合并同类项----合并同类项法则5、 系数化为1.----等式性质2【课堂练习】练习:解下列一元一次方程解方程: (2) ;思路点拔:(1)去分母所选的乘数应是所有分母的最小公倍数,不应遗漏。(2)用分母的最小公倍数去乘方程的两边时,不要漏掉等号两边不含分母的项。(3)去掉分母后,分数线也同时去掉,分子上的多项式用括号括起来。回顾解以上方程的全过程,表示了一元一次方程解法的一般步骤,通过去分母—去括号—移项—合并同类项—系数化为1等步骤,就可以使一元一次方程逐步向着 =a的形式转化。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。