
通过学生个说,资源共享、相互学习,了解国旗、国徽图案象征意义。通过王二小、黄继光、赵一曼几位烈士故事,走进中国解放战争、抗日战争炮火纷飞的年代,“国旗的鲜红是烈士的鲜血染红的”深入心田,让学生真切感受到新中国的生日来之不易。突破教学重点。活动三设计意图:捕捉课堂情感的高潮,巧妙宣泄在儿歌诵读中。将学生对英雄的崇敬之情推向一个崭新高度,深刻地领悟高尚的爱国情操。播放升旗视频,在情境创设中学生行注目礼、唱国歌,心中涌动的激情非同往昔。爱国主义的种子已经悄然撒播。攀升了教学的难点。活动四设计理念:通过找一找,学生明白了在政府机关、校园、祭奠先烈陵园、运动员领奖台等地方国旗高高飘扬。了解到机关、单位、集体才能升挂国旗。绘本中的情境较为常见,通过议一议不少学生都遇到过,但却不知如何正确地处理,这一环节也是本课回归生活的重要支点。通过小组讨论,教师指导和补充,引导学生爱护国旗和国徽,并体现在日常行为中。

接下来,学生讲一讲自己和家人过中秋节时的内心体验,并用写一写、画一画、唱一唱等自己喜欢的方式来表达,之后,全班交流展示。板书:幸福 团圆设计意图:体会“中秋节,团圆夜”的中秋文化味道,明白中秋团圆之意义。环节三:快快乐乐咏中秋学生阅读教材第14页到第15页的绘本《古诗词中的月》,学生说说还知道的咏月思亲的佳句,也可以自己创作一两句儿歌。设计意图:学以致用,感受中秋文化所蕴含的人文情怀,感悟中华文化的魅力。环节四:感悟明理,育情导行学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节五:拓展延伸,回归生活回家后,与爸爸妈妈分享课上学到的有关中秋的一些话题。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。

本环节主要是对前面三个活动的综合。我会以谈话的方式和学生交流:各位小导游,你们知道的真多,听了小导游的介绍我也想到你们的家乡参观了。那么,我们怎样能让更多的外地小朋友了解我们的家乡呢?爱家乡的小导游们,让我们更好地宣传家乡吧,下课后请在你的家乡美景宣传卡上写下你对家乡的赞美,夸夸我们美丽的家乡!【设计意图】“夸家乡”是对本课所学的升华,提升学生对家乡的热爱之情,也是根据品德与生活课程开放性与语文二年级下册口语交际写话《夸家乡》的整合,对学生语文学习也有所帮助。七、板书设计好的板书就像一份微型教案,对于低年级学生而言,避免空洞、枯燥的概念,条条框框的限制,用生动的形象来吸引学生是很有必要的。此板书力图前面而简明的将授课内容传递给学生,清晰直观,便于学生理解和理清本课脉络。以上是我从教材、学情、教学目标、教学方法、教学准备、教学过程、板书设计七个方面对本课进行的说明。

在本次活动中,根据统编教材的精神与理念,把表达与表现有机的进行整合,为孩子们创设了条件,使孩子们成为学习的主人,树立了以“儿童发展为本”的理念,尊重孩子,把孩子们自己发现的问题交由孩子们自己解决,大家各抒己见,采用各种不同的方法表达表现自己的认识,让孩子与老师,孩子与孩子,孩子与环境发生互动,互相学习,互相感染,真正发挥了幼儿学习主人的作用,使孩子在已有的经验基础上得到了提升。秋天到了,家长都会带孩子出去秋游,这样让我们天真可爱的孩子也知道爱护环境,我特意选择了这节环保活动课程。以王勇和他同学的行为做为切入点,让学生明白在秋游活动应该如何爱护环境,让环保意识深入学生心中。我特意设计了一项垃圾分类活动,让学生认识不同垃圾的标志和概念,让学生知道垃圾分类的好处,引导学生垃圾分类。最后,再把津北小学文明校园的创建,宁国市文明城市的创建植根学生心中。

设计意图:引导学生了解祖国的行政区域划分,从中感受国土的辽阔。活动三:祖国的每一寸土地都神圣不可侵犯学生阅读教材第47页的图文资料,结合课前查阅到的有关台湾省的资料,先小组内交流分享台湾省的美丽风光和民风民情,以及民族英雄郑成功收复台湾的故事等,再全班分享,教师相机引导,学生体会到台湾自古以来是我国领土不可分割的一部分,并板书。设计意图:引导学生知道台湾是我国领土不可分割的一部分。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以辽阔的国土为主题写一篇日记。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。

最后,教师用课件出示有关品行方面的格言与它们的大意,学生连线,并说说这些格言对自己有什么启示。设计意图:引导学生交流格言与启示,愿意在生活中不懈追求人格修养的提高。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸课后,以自强不息的人格修养为主题写一篇日记。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《传统美德,源远流长》,下面是:明志,气节,诚信,求新;知行合一。我的说课完毕,谢谢各位评委老师!

写 了中国历 史的辉煌篇章 。你知道哪些相关的事例呢 ?3、故事屋 : “彝海结盟”4 、小提示 :正是由于有各民族人民的艰苦奋斗 、团结互助 ,才有今天 这个伟大的多 民族国家一一中国。各民族在长期的历史发展 中,形成了 一 种相互依存的密切联系 ,我过经济今天取得的成就是各民族共同努力的结 果。5、相关链接 :课本第 58 页。6 、小提示:在长期实践和不 断交往中 ,各民族相互借鉴、相互欣赏 、 相互促进,共同创 造了光辉灿烂的中华文化 。7、活动园 :下面是 一一些同学查找到的各民族对中华文化贡献 的事例 , 你还能举出其他的事例吗 ?小结:我国是一个统一的多 民族国家,在长期的 生活和实践过程当中 , 各民族相互交往 交流交融 ,相互影响 、相互促进,共同努力建立和建设 了 社会主义新中国,并共同床在了 光辉灿烂的中华文 化。我们各民族是一个 共同体 ,谁也离不开谁。

然后,教师引导学生交流:你和同学沟通后,如果意见仍未达成一致,你会如何处理?板书:进行讨论,给对方充分解释的机会。设计意图:引导学生学懂得,与人沟通,在未能达成共识的情况下,要进行讨论,给对方充分解释的机会。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:布置作业,课外延伸将学到的与人沟通的方法应用到生活中。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。六、板书设计为了突出重点,让学生整体上感知本节课的主要内容,我将以思维导图的形式设计板书:在黑板中上方的中间位置是课题《学会沟通交流》,下面是:敢于表达、准确地表达;倾听的技巧;进行讨论,给对方充分解释的机会。

师:你们还知道哪些地方没有保持安静的标志,同样需要我们小点儿声?(校园的走廊、电梯、商场、餐厅等) 师:孩子们都有一双善于发现的眼睛。能够找到我们身边需要保持安静的场所。不论是学校、公园还是商场、银行。这些地方都是公共场所,虽然没有保持安静的的标志,我们也要小点儿声。那么,是不是这些地方我们就不能说话了呢? 5、课件出示电梯场景 师:这,是我们非常熟悉的电梯。丽丽和她的2个伙伴正乘坐电梯去上班,这时候他们可以聊天吗?为什么? 师:当电梯来到11楼,又进来的2个人,这是他们应该怎么做呢? 生:调节自己聊天的音量,不打扰其他人乘坐电梯。 师:公共场所不是不可以讲话,只是要根据实际情况调节自己的音量,不影响他们,就是文明的行为。

1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.

解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.

证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)活动目的:让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习.注意事项:学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等关系的传递性得出∠1>∠2。

1.能从统计图中获取信息,并求出相关数据的平均数、中位数、众数;(重点)2.理解并分析平均数、中位数、众数所体现的集中趋势.(难点)一、情境导入某次射击比赛,甲队员的成绩如下:(1)根据统计图,确定10次射击成绩的众数、中位数,说说你的做法,并与同伴交流.(2)先估计这10次射击成绩的平均数,再具体算一算,看看你的估计水平如何.二、合作探究探究点一:从折线统计图分析数据的集中趋势广州市努力改善空气质量,近年空气质量明显好转,根据广州市环境保护局公布的2006~2010年这五年各年的全年空气质量优良的天数,绘制成折线图如图所示.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是________;(2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的平均数.解析:(1)由图知,把这五年的全年空气质量优良天数按照从小到大的顺序排列为:333,334,345,347,357,所以中位数是345;

方法总结:要认真观察图象,结合题意,弄清各点所表示的意义.探究点二:一次函数与一元一次方程一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0D.x=3解析:首先由函数经过点(0,1)可得b=1,再将点(2,3)代入y=kx+1,可求出k的值为1,从而可得出一次函数的表达式为y=x+1,再求出方程x+1=0的解为x=-1,故选A.方法总结:此题主要考查了一次函数与一元一次方程的关系,关键是正确利用待定系数法求出一次函数的关系式.三、板书设计一次函数的应用单个一次函数图象的应用一次函数与一元一次方程的关系探究的过程由浅入深,并利用了丰富的实际情景,增加了学生的学习兴趣.教学中要注意层层递进,逐步让学生掌握求一次函数与一元一次方程的关系.教学中还应注意尊重学生的个体差异,使每个学生都学有所获.

1.关于二次根式的概念,要注意以下几点:(1)从形式上看,二次根式是以根号“ ”表示的代数式,这里的开方运算是最后一步运算。如 , 等不是二次根式,而是含有二次根式的代数式或二次根式的运算;(2)当一个二次根式前面乘有一个有理数或有理式(整式或分式)时,虽然最后运算不是开方而是乘法,但为了方便起见,我们把它看作一个整体仍叫做二次根式,而前面与其相乘的有理数或有理式就叫做二次根式的系数;(3)二次根式的被开方数,可以是某个确定的非负实数,也可以是某个代数式表示的数,但其中所含字母的取值必须使得该代数式的值为非负实数;(4)像“ , ”等虽然可以进行开方运算,但它们仍属于二次根式。2.二次根式的主要性质(1) ; (2) ; (3) ;(4)积的算术平方根的性质: ;(5)商的算术平方根的性质: ;

方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.

属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。

解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.

学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;

方法总结:平行线与角的大小关系、直线的位置关系是紧密联系在一起的.由两直线平行的位置关系得到两个相关角的数量关系,从而得到相应角的度数.探究点四:平行于同一条直线的两直线平行如图所示,AB∥CD.求证:∠B+∠BED+∠D=360°.解析:证明本题的关键是如何使平行线与要证的角发生联系,显然需作出辅助线,沟通已知和结论.已知AB∥CD,但没有一条直线既与AB相交,又与CD相交,所以需要作辅助线构造同位角、内错角或同旁内角,但是又要保证原有条件和结论的完整性,所以需要过点E作AB的平行线.证明:如图所示,过点E作EF∥AB,则有∠B+∠BEF=180°(两直线平行,同旁内角互补).又∵AB∥CD(已知),∴EF∥CD(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠FED+∠D=180°(两直线平行,同旁内角互补).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性质),即∠B+∠BED+∠D=360°.方法总结:过一点作一条直线或线段的平行线是我们常作的辅助线.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。