根据《合同法》、《建筑法》建筑工程总承包、分包管理办法及建筑工程安全生产管理条例、建设工程质量管理条例规定要求、结合本工程实际情况,在平等互利的条件下,经双方协商签订本合同,双方共同遵守。一、工程概况:1、 工程名称:望京文博学院西平房改造工程。2、 工程地址:望京西地铁站。3、 工程内容:地暖盘管工程。二、承包方式:包工包料包施工,验收合格后按实铺面积结算。乙方应严格根据设计图纸要求组织施工,施工前使用的材料及样品向甲方报样,并且所用材料进行二次复试出具合格报告得到认可后方能批量使用。三、承包价款 商业街1#楼地暖工程,包工包料包施工,达到【北京建筑工程施工质量验收标准】。根据设计图纸按实铺面积每平方米 元。四、质量要求:地面敷设采暖工程使用的厂家联塑,PEX管材、管件、配件的质量,必须符合国家、行业及地方现行有关标准的规定。地面下敷设的盘管埋地部分不得有接头,盘管隐蔽前必须进行水压试验,试验压力为工作压力的1.5倍,但不小于0.6MPA。加热盘管弯曲部分不得出现硬折弯现象,曲率半径不应小于管道外径的5倍。加热盘管管径、间距和长度必须符合设计要求,其允许偏差为±10㎜.分(集)水器规格、型号、公称压力及安装位置、高度等应符合甲方使用要求。乙方应严格按照合同约定及图纸设计要求的质量标准进入工地,并按北京市建筑工程有关规范、规定进行。如达不到以上要求,甲方有权叫乙方重新更换产品,在工程竣工验收合格移交给甲方前,乙方要作好成品保护工作,如有损坏由乙方负责维修,甲方预留乙方工程总造价的5%作为工程质量保证金,在工程验收合格移交给客户后其产品保修三年,如三年后无质量问题返还其剩余工程款。
为了明确双方责任,密切配合,共同完成施工任务,依据有关规定和工程具体情况,经过协商,签订本合同,双方共同遵守执行。一、承包范围: 中泰名城CA区C3#—CA4#桩基 工程。从施工准备到工完料净等全部操作工序。内容包括:定位放线、钻孔、混凝土浇筑、充盈系数、材料检测、材料复试、技术资料整理归档、水电费、税收、管理费、协调地方关系费等。交工时应提交完整技术资料四套。静载试验、高低应变试验所有试验均由乙方负责(具体试桩数量以不小于图纸说明为准),所发生的试验费全部由乙方负责。所有机械设备等材料全部由乙方负责。二、承包方式:清工三、承包价格及结算方式:1、承包价格: 195 /m³(见附件人)此价款为含税价款。工程量暂定为 2500 /m³,合同价款约为 480000元 实际结算额据实结算。2、本合同价款采用固定综合单价的合同方式。合同单价中包括承包范围之内的全部费用,综合单价一次性包死不做调整,合同单价综合考虑了桩长及各类地质情况等因素,无论实际施工中遇到岩石、各类土质、砂石或者地下水,均执行此单价。结算时合同综合单价固定不变,无论发生何种情况均不予调整,人工、材料、机械、工期、施工方案、政策性调整等各种风险均含在合同综合单价内。
《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
一、复习回顾,温故知新1. 任意角三角函数的定义【答案】设角 它的终边与单位圆交于点 。那么(1) (2) 2.诱导公式一 ,其中, 。终边相同的角的同一三角函数值相等二、探索新知思考1:(1).终边相同的角的同一三角函数值有什么关系?【答案】相等(2).角 -α与α的终边 有何位置关系?【答案】终边关于x轴对称(3).角 与α的终边 有何位置关系?【答案】终边关于y轴对称(4).角 与α的终边 有何位置关系?【答案】终边关于原点对称思考2: 已知任意角α的终边与单位圆相交于点P(x, y),请同学们思考回答点P关于原点、x轴、y轴对称的三个点的坐标是什么?【答案】点P(x, y)关于原点对称点P1(-x, -y)点P(x, y)关于x轴对称点P2(x, -y) 点P(x, y)关于y轴对称点P3(-x, y)
《基本不等式》在人教A版高中数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容也是之后基本不等式应用的必要基础。课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。2.经历基本不等式的推导与证明过程,提升逻辑推理能力。3.在猜想论证的过程中,体会数学的严谨性。数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值;4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
本节课选自《普通高中课程标准数学教科书-必修一》(人 教A版)第五章《三角函数》,本节课是第1课时,本节主要介绍推广角的概念,引入正角、负角、零角的定义,象限角的概念以及终边相同的角的表示法。树立运动变化的观点,并由此进一步理解推广后的角的概念。教学方法可以选用讨论法,通过实际问题,如时针与分针、体操等等都能形成角的流念,给学生以直观的印象,形成正角、负角、零角的概念,明确规定角的概念,通过具体问题让学生从不同角度理解终边相同的角,从特殊到一般归纳出终边相同的角的表示方法。A.了解任意角的概念;B.掌握正角、负角、零角及象限角的定义,理解任意角的概念;C.掌握终边相同的角的表示方法;D.会判断角所在的象限。 1.数学抽象:角的概念;2.逻辑推理:象限角的表示;3.数学运算:判断角所在象限;4.直观想象:从特殊到一般的数学思想方法;
学生在初中学习了 ~ ,但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.因此为了准确描述这些现象,本节课主要就旋转度数和旋转方向对角的概念进行推广.课程目标1.了解任意角的概念.2.理解象限角的概念及终边相同的角的含义.3.掌握判断象限角及表示终边相同的角的方法.数学学科素养1.数学抽象:理解任意角的概念,能区分各类角;2.逻辑推理:求区域角;3.数学运算:会判断象限角及终边相同的角.重点:理解象限角的概念及终边相同的角的含义;难点:掌握判断象限角及表示终边相同的角的方法.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。一、 情景导入初中对角的定义是:射线OA绕端点O按逆时针方向旋转一周回到起始位置,在这个过程中可以得到 ~ 范围内的角.但是现实生活中随处可见超出 ~ 范围的角.例如体操中有“前空翻转体 ”,且主动轮和被动轮的旋转方向不一致.
知识探究(一):普查与抽查像人口普查这样,对每一个调查调查对象都进行调查的方法,称为全面调查(又称普查)。 在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体。为了强调调查目的,也可以把调查对象的某些指标的全体作为总体,每一个调查对象的相应指标作为个体。问题二:除了普查,还有其他的调查方法吗?由于人口普查需要花费巨大的财力、物力,因而不宜经常进行。为了及时掌握全国人口变动状况,我国每年还会进行一次人口变动情况的调查,根据抽取的居民情况来推断总体的人口变动情况。像这样,根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和判断的方法,称为抽样调查(或称抽查)。我们把从总体中抽取的那部分个体称为样本,样本中包含的个体数称为样本量。
本节主要内容是三角函数的诱导公式中的公式二至公式六,其推导过程中涉及到对称变换,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会 的任意性;综合六组诱导公式总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。课程目标1.借助单位圆,推导出正弦、余弦第二、三、四、五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?
(2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.
2、小预备铃响后,教师必须立即站到教室门口,关注并确保每个学生都迅速做好课前准备(摆好学习用品,课本放到作业本上,文具放在旁边,坐得端正),确保室内安静。 3、上课铃响后,班长喊“起立!”老师精神抖擞走上讲台,亲切地招呼学生“同学们好!”同学们回答“老师好!”老师微笑着说“请坐下!”学生坐下。
二、集体备课 ㈠、地点:各学部教师办公室或集体备课室 ㈡、时间:文、理科不同时,确保不影响正常教学秩序。 ㈢、负责人:备课组长 ㈣、一般程序及任务 1、质疑问难,研讨下周所教的教材; 2、研讨下周每节课如何引导学生紧张、高效地自学,达到五个“统一”:⑴、统一进度(划分课时);⑵、统一学习目标;⑶、统一思考题和检测题;⑷、统一课堂作业;⑸、统一教学过程。
同时,不定期召开班会,就学风、考风、为人处世、理财、锻炼身体、感恩等内容对大家进行教育,让学生遵守学校各项规章和治安秩序,注意自己财产人生安全,对班级近期出现的一些不好现象进行批评教育,对出现的先进分子表扬鼓励,激励大家要积极地参与学校各项活动,利用各种平台来锻炼自己的各项能力。
1.依然延续上学期每周一次班会、一次团活的规定(每次班会唱一次班歌,团会唱团歌),对每星期的班级工作和团工作进行总结让同学们各抒己见,使大家感觉到班级是大家的班级,每一个人对班级工作都有发言权,这也是加强班级团结的有效方法。2.适时组织班级的娱乐活动,让大家在轻松的气氛中进一步加深了解,增进感情。
1、班主任要分析班级学生的行为和习惯,制定切实可行的班级安全工作规章制度。 2、针对当前甲型h1n1现状,积极在班级宣传防控措施,张贴相关知识明白纸,出防控黑板报,监督好值日人员的开窗通风及消毒工作。 3、重视安全教育,要经常在班内回顾总结安全上存在的隐患,提出引起注意和需改正的要求。
一、活动背景:雷锋精神是我们中华民族宝贵的精神财富,三月是传统的学习雷锋月,为进一步落实“立德树人”的教育根本任务和践行社会主义核心价值观。为进一步弘扬雷锋精神,引导学生做新时代好队员。为进一步了了解雷锋精神的丰富内涵,学习雷锋,学习当代道德模范,践行社会主义核心价值观,传承和弘扬雷锋精神,争当新时代的好队员!我们开展本次主题班会。二、班会目标:1、通过活动,使学生知道为什么要学习雷锋,怎样学习雷锋。引导学生以雷锋为榜样,做新时代的雷锋传人。2、通过活动,引导学生学习雷锋无私奉献的精神,学习雷锋刻苦钻研、好学上进的精神;学习雷锋在学习、生活中,不怕困难的理想信念。
一、活动背景:雷锋是时代的楷模,雷锋精神是永恒的。为进一步弘扬雷锋精神,传承传统美德,营造讲文明树新风的氛围;为进一步教育引领学生热爱集体、关心他人、团结友爱、乐于奉献,让胸前的红领巾更加鲜艳,争做新时代好少年;为进一步提高学生的服务意识和无私奉献精神,弘扬乐于助人的崇高品德,有效促进学校学生综合素质的提高,引导每一位学生从身边小事做起,让“雷锋”精神无处不在,永驻心中。特此,我们开展本次主题班会。二、班会目标:1、通过活动,营造“知雷锋、爱雷锋、做雷锋”浓烈氛围,从而学习雷锋无私、友爱、助人、敬业、奋进、钻研的美好品质。进而促进文明校园创建,让雷锋精神在实践中汇聚起崇德向善的正能量。2、通过活动,引导学生学习雷锋无私奉献的精神,以实际行动学习雷锋精神,践行雷锋精神,把雷锋精神代代传承下去。3、通过活动,引导学生在学习和生活中用实际行动去发扬雷锋艰苦朴素的优良作风和乐于助人的奉献精神,真正从自身做起,从点滴做起,从今天做起。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。