[互动2]师:请大家从上面的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式?小组讨论之后再发表意见。生:第一步根据图象,确定这个函数是正比例函数或是一次函数;第二步设函数表达式;第三步:根据表达式列等式,若是正比例函数,只要找图象上一个点的坐标就可以了;若是一次函数,则需要找到图象上两个点的坐标,然后把点的坐标分别代入所设的解析式中,组成关于R、b的一个或两个方程。第四步:求出R、b的值第五步:把R、b的值代回到表达式中就可以了。师:分析得太好了。那么,大家说一说,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?要说明理由。生:确定正比例函数需要一个条件,而确定一次函数需要两个条件。原因是正比例函数的表达式:y=Rx(R≠0)中,只有一个系数R,而一次函数的表达式y=Rx+b(R≠0)中,有两个系数(待定)R和b。
方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015 B.2016 C.2017 D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;
(1)该校被抽查的学生共有多少名?(2)现规定视力5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2015年有多少名学生视力合格.解析:由折线统计图可知2015年被抽取的学生人数,且扇形统计图中对应的A区所占的百分比已知,由此即可求出被抽查的学生人数;根据扇形统计图中C、D区所占的百分比,即可求出该年级在2015年有多少名学生视力合格.解:(1)该校被抽查的学生人数为80÷40%=200(人);(2)估计该年级在2015年视力合格的学生人数为600×(10%+20%)=180(人).方法总结:本题的解题技巧在于从两个统计图中获取正确的信息,并互相补充互相利用.例如求被抽查的学生人数时,由折线统计图可知2015年被抽取的学生人数是80人,与其相对应的是扇形统计图中的A区,而A区所占的百分比是40%,由此求出被抽查的学生人数为80÷40%=200(人).
二.思考:(-2) 可以写成-2 吗?( ) 可以写成 吗?(指名学生回答,师生共同总结:负数和分数的乘方书写时,一定要把整个负数和分数用小括号括起来)三.计算:①(-2) ,②-2 ,③(- ) ,④ (叫4个学生上台板演,其他练习本上完成,教师巡视,确保人人学得紧张高效).(四)讨论更正,合作探究1.学生自由更正,或写出不同解法;2.评讲思考:将三题①③中将底数换成为正数或0,结果有什么规律?学生总结:负数的奇次幂是负数,负数的偶次幂是正数,正数的任何次幂都是正数,0的任何正整数次幂都为0。有理数的乘方就是几个相同因数积的运算,可以运用有理数乘方法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.
讨论归纳,总结出多个有理数相乘的规律:几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。(2)几个不等于0的因数相乘时,积的绝对值是多少?(生:积的绝对值是这几个因数的绝对值的乘积.)例2、计算:(1) ;(2) 分析:(1)有多个不为零的有理数相乘时,可以先确定积的符号,再把绝对值相乘;(2)若其中有一个因数为0,则积为0。解:(1) = (2) =0练习(1) ,(2) ,(3) 6、探索活动:把-6表示成两个整数的积,有多少种可能性?把它们全部写出来。(三)课堂小结通过本节课的学习,大家学会了什么?(1)有理数的乘法法则。(2)多个不等于0的有理数相乘,积的符号由负因数的个数决定。(3)几个数相乘时,如果有一个因数是0,则积就为0。(4)乘积是1的两个有理数互为倒数。(四)作业:课本作业题
方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.三、板书设计加法法则(1)同号两数相加,取与加数相同的符号,把绝对 值相加.(2)异号两数相加,取绝对值较大加数的符号,并 用较大的绝对值减去较小的绝对值.(3)互为相反数的两数相加得0.(4)一个数同0相加,仍得这个数.本课时利用情境教学、解决问题等方法进行教学,使学生在情境中提出问题,并寻找解决问题的途径,因此不知不觉地进入学习氛围,把学生从被动学习变为主动想学.在本节教学中,要坚持以学生为主体,教师为主导,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中.
1、掌握有理数混合运算法则,并能进行有理数的混合运算的计算。2、经历“二十四”点游戏,培养学生的探究能力[教学重点]有理数混合运算法则。[教学难点]培养探索思 维方式。【教学过程】情境导入——有理数的混合运算是指一个算式里含有加、减、乘、除、乘方的多种运算.下面的算式里有哪几种运算?3+50÷22×( )-1.有理数混合运算的运算顺序规定如下:1 先算乘方,再算乘除,最后算加减;2 同级运算,按照从左至右的顺序进行;3 如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。 加法和减法叫做第一级运算;乘法和除法叫做第二级运算;乘方和开方(今后将会学到)叫做第三级运算。注意:可以应用运算律,适当改变运算顺序,使运算简便.合作探究——
(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。说明:练习注意了问题的梯度,由浅入深,一步步引导学生从不同的图象中获取信息,对同学的回答,教师给予点评,对回答问题暂时有困难的同学,教师应帮助他们树立信心。第四环节:课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
1.会用二次根式的四则运算法则进行简单地运算;(重点)2.灵活运用二次根式的乘法公式.(难点)一、情境导入下面正方形的边长分别是多少?这两个数之间有什么关系,你能借助什么运算法则或运算律解释它?二、合作探究探究点一:二次根式的乘除运算【类型一】 二次根式的乘法计算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法总结:几个二次根式相乘,把它们的被开方数相乘,根指数不变,如果积含有能开得尽方的因数或因式,一定要化简.【类型二】 二次根式的除法计算a2-2a÷a的结果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故选C.
(4)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势;从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩较稳定.综上所述,选派甲队参赛更能取得好成绩.方法总结:本题是反映数据集中程度与离散程度的综合题.从图形中得到两队的成绩,然后从平均数、方差的角度来考虑,在平均数相同的情况下,方差越小的越稳定.三、板书设计数据的离散程度极差:一组数据中最大数据与最小数据的差方差:各个数据与平均数差的平方的平均数 s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]标准差:方差的算术平方根 公式:s=s2经历表示数据离散程度的几个量的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力.通过小组合作,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.
四、教学设计反思这节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图象的对应关系应让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.当然,根据学生状况,教学设计也应做出相应的调整。如第一环节:创设情境 引入课题,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至对部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直入主题,如提出问题:正比例函数的代数形式是y=kx,那么,一个正比例函数对应的图形具有什么特征呢?
教学目标 知识目标:通过欣赏大自然的图片,感知大自然不同特点的美。 技能目标:能用自己喜欢的方式表达对不同自然美的感受。 情感态度与价值观:培养学生热爱大自然的情感,及爱护大自然的情感。 教学重点让学生感受大自然不同的美,了解大自然的丰富,并能用简单的语言表达自己的感受。 教学难点学习用审美的眼光去观察大自然。 主要教法启发引导法、自学尝试法 学习指导体验探究法辅助指导法 教学资源教师:教材、课件。 学生:教材、自然风光片 教学过程: 教学活动教学意图 教师学生
本环节运用了一个阶梯式的问答方法,帮助突破本节课的难点。同时,从具体的实际问题入手,由特殊问题到一般规律的揭示,不仅解决了难点问题,而且从另外一个角度讲也渗透给了学生的数形结合思想,还有利于学生主动探索意识的培养。4、自主评价本环节主要是应用本节课所学的知识以及所积累形成的学习经验和体验解决问题的过程,即课堂巩固训练。在练习题的选择上,由简单到复杂。先是结合图象获取信息进行简单的填空和选择,此题属于A组题型,检验学生的掌握情况;然后进行了一道B组题,关于“一次函数与一元一次方程的关系”知识点的灵活运用,进一步通过练习体会它们的关系。5、自主发展:最后一道则是特殊的区别于之前所学习的分段函数练习,发散学生思维问题的训练。让学生体会分段函数的特点,并掌握求分段函数解析式的方法。
(3)学生根据展示的作品,汇报设计过程。做完后,让学生说一说自己的设计过程。设计意图:通过画一画展示作品,让学生体会图形变化的多样性和趣味性。(三)、总结提升、质疑问难。通过本节课的探究,你一定收获颇丰,谁愿意告诉老师,这节课你的学习收获?设计意图:通过让学生小结这节课的知识点,巩固将图形放大或缩小的方法。(四)、课堂检测(课件出示)1、请说出下图的各个动物馆的位置。2、判断题:3、选择题:设计意图:通过课堂检测巩固学生对知识点的应用。(五)、课外拓展延伸。(1分钟)生活处处有数学,生活中也有很多图形的放大与缩小的现象,你能举出一些例子吗?(课件播放图形的放大与缩小现象的例子)设计意图:让学生意识到生活中处处有数学,发现数学的美。
一、说教材(一)、教学内容:一年级数学上册第73-74页的内容及相应的习题。(二)、教材所处地位及作用“11-20各数的认识”这部分教材是在学生掌握10以内数的基础上,通过操作实践,观察思考、合作交流等学习方式帮助学生学习新知识,并且为学习20以内的加、减法做好准备。本课分成三个层次进行教学:第一,是先出示水果卡片的情境图,让学生观察、数一数,图中有些什么?有多少?并且通过这个情境图让学生明白数数是按顺序点着数。第二,是让学生通过观察思考、动手操作、数一数及合作交流的学习方式去学习“11-20各数”的认识、组成、数的顺序及大小。第三,通过创设一系列的游戏情境,让学生巩固本节课的新知识。(三)、教学目标:1.常识技巧目的:通过《11-20各数的意识》的教养,学生应当取得以下方面的知识和技能
七、教学过程(一)、创设情境,引入新授师:同学们,开学快两个月了,你们跟老师在一起开心吗?(开心)师:我也非常地开心,做梦都想跟你们在一起。昨天晚上,老师做了一个美梦,你们想和老师一起分享吗?(想!)老师梦见,在一个阳光明媚的日子里,老师跟你们一起乘坐热汽球飘到了南极!一到南极,你们跟老师一样,都兴奋极了。知道为什么吗?因为在那里,我们看到了许多可爱的企鹅(板书课题:可爱的企鹅)。你们拼命地召唤企鹅,想和企鹅交朋友。可企鹅们没有马上答应,而是要我们共同努力,答对了它们的问题才跟我们交朋友!你们有信心答对吗?(有!)一起同游,更消除了师生之间的隔膜,上课的气氛会更融洽。培养学生的团队合作精神和与人交流的能力;体验与人合作、交流的快乐;培养学生不怕困难,勇于探索的信心和勇气。
一、说教材:教学内容:课本第14-15页教材简析:《快乐的午餐》这节内容是在对数的含义有了初步的感知,并且在生活中已经积累了一些感性经验之后进行学习的。这一内容的学习也是为下一节学习数的大小的比较打基础的。教学利用情境图,激发学生学习兴趣,并培养学生的观察能力以及语言表达能力,同对学生进行思想品德教育。二、说学生一年级学生的生活语言较丰富,但缺乏数学语言;他们思维活跃,敢于暴露自己的思维过程和结果。小学生好动,思维持久性差,也就是有意注意处于不稳定状态。一年级学生在生活中已经积累了一些感性经验,比如吃饭时发餐具。一年级学生喜欢接触有明亮色彩的,多动,喜欢新鲜事物。所以学习资料最好有图片/插图,声音/歌曲。要寓教于乐,教学方式要多样,在游戏中增长知识是最好的方法。因此,我制定了以下教学目标.
一、说教材1、教学内容北师大版小学数学五年级上册第五单元的第一课时《分数的再认识(一)》。2、教材分析本课是学生在三年级初步认识分数的基础上,进行深入和拓展的。在三年级,学生已结合情境和直观操作,体验了分数产生的过程,认识了整体“1”,初步了解了分数的意义,能认、读、写一些简单的分数。本节课是在此基础上,进一步引导学生认识和理解分数,为后面进一步学习、运用分数知识做好铺垫。本课的课题是《分数的再认识》,这个“再认识”,我想应该有两方面的含义,一是进一步认识、理解分数的意义,二是结合具体的情境,让学生体会“整体”与“部分”的关系,体会“整体不同,同一个分数所对应的数量也不同”,从而体验数学知识形成的全过程。3、教学目标根据教学内容和学生的认知能力,我将本节课的教学目标制定如下:
(四)引导观察,发现规律1.解决的问题(1)观察发现分数的基本性质(2)培养学生观察--探索--抽象--概括的能力。2.教学安排(1)提出问题:通过验证这两组分数确实相等,那么,它们的分子、分母有什么变化规律呢?(2)全班交流:不论学生的观察结果是什么,教师要顺应学生的思维,针对学生的观察方法,进行引导性评价①观察角度的独特性②观察事物的有序性③观察事物的全面性等。(注意观察的顺序从左到右、从右到左)引导层次一:你发现了1/2和2/4两个数之间的这样的规律,在这个等式中任意两个数都有这样的规律吗?引导学生对1/2和4/8、2/4和4/8每组中两个数之间规律的观察。引导层次二:在1/2=2/4=4/8中数之间有这样的规律,在9/12=6/8=3/4中呢?引导层次三:用自己的话把你观察到的规律概括出来。
1、走进课堂、汇报总结因为是预习后的课,所以我直接问“昨天老师布置了预习作业,你都学会了什么”从孩子们掌握的知识切入,进行新授。让学生总结出2、5的倍数的特征,奇数与偶数的概念,以及既是2的倍数,又是5的倍数的特征。二、尝试练习检验学生预习效果,这是数学预习不可缺少的过程。数学学科有别于其他学科的一大特点就是要用数学知识解决问题。学生经过自己的努力初步理解和掌握了新的数学知识,要让学生通过做练习或解决简单的问题来检验自己预习的效果。既能让学生反思预习过程中的漏洞,又能让老师发现学生学习新知识时较集中的问题,以便课堂教学时抓住重、难点。因为是预习之后的课,所以练习题的难度比较高,安排了不同难度的练习题来巩固新知识。三、设置下节课预习任务设置下节课的预习任务,是进行下节课内容的铺垫,让孩子们按着一定的方案有计划、有目标地对下节课进行预习,以便下节课的教学活动。