非常感谢各位领导和老师给我这此学习和提高的机会,今天我说客的题目是小学主题班会——《少年强则中国强》,下面我将从设计背景、活动目标、活动准备、活动重难点、活动方法、活动过程、活动反思七个方面进行说课。一、 说活动设计背景(理念)我们的祖国日益强盛,但仍然还面临着一系列的挑战,但孩子们却如温室中的花朵,完全意识不到自己身上的重担,在学校比吃比穿,不爱劳动,无视校规校纪,沉迷网络游戏,凡事不能自立自强,反而我行我素。因此,我们开展《少年强则中国强》的主题班会目的就是要激励我们青少年从自己做起,从小事做起,以实际行动投身到热爱祖国中去,从小立志:今天为振兴中华而努力学习,明天为创造祖国美好未来贡献力量。
六、说活动设计一节班会四十分钟,到底能给学生怎样的教育,能带给他们多少深远的影响。在班会的设计上,我主要突出以下几个特点: (一)巧定主题。我紧扣爱国主题,紧密联系学生生活实际,以“国庆六十年阅兵庆典”为切入点,以“爱国”为主线,选择典型事例,对不同时期的中国有一定的展示,加深学生对祖国的了解。(二)层次清晰。从五个方面循序渐进地引领学生对中国加以认识、理解、感悟,最后激发他们的爱国情怀,各环节推进自然。 (三)情感渗透。用《昨天与今天》相关图片震动学生的心灵,让学生感受到我们的祖国妈妈的贫穷落后的状态,又用一系列的建国六十五年来取得的巨大变化的图片,让学生感受到祖国的现在。使他们知道,不仅要爱富裕的祖国妈妈,也要爱贫穷中的祖国妈妈。
“我们的人民热爱生活,期盼有更好的教育、更稳定的工作、更满意的收入、更可靠的社会保障、更高水平的医疗卫生服务、更舒适的居住条件、更优美的环境,期盼着孩子们能成长得更好、工作得更好、生活得更好。人民对美好生活的向往,就是我们的奋斗目标。”四、中国梦这是一个绽放梦想的时代,每个人都是梦想家。中国梦从我的梦开始。同学们,在每一个阶段尽情放飞你的梦想,让他带领你前行,照亮你的人生。坚持梦想的过程,是一个不断超越自我、实现自我的过程。抬头看着你的梦想,脚踏实地的努力每天都离梦想更近一步。中国梦,承载着中国民主、富强、公正、和谐、自由的最基本价值观、承载着自强不息的中国精神。中国梦需要我们每一个人付出自己的努力,共筑梦想,让梦想照耀中国,善良世界。
这个活动环节要发挥队员的自主性和创造性,在游戏中,辅导员和队员们一起观察、倾听、交流,达到了“教育无痕,润物细无声”的活动目的。环节二:“观盛会,回忆往昔悟爱国。”活动课之前,“新闻小记者小队”通过查找资料,制作微视频。在活动现场,队员们一起观看“纪念抗战胜利70周年阅兵”盛况,回顾清明节为革命烈士扫墓的情景。辅导员引导大家分享感言,让队员们明白革命烈士在战场上浴血奋战才换来今天的幸福生活,同时也认识到我们要牢记历史,并不是要延续仇恨,而是要以史为鉴、珍爱和平,面向未来!在这个环节中,辅导员是引领者,要走进队员中,以“牢记历史,珍爱和平”为切入点,唤起队员们爱国意识,帮助他们领悟“爱国”是一种崇高的情怀,大家齐心协力,国家才能走向更美好的未来!环节三:“看电影,七嘴八舌话爱国。”
一、说教材本课的教学内容是《吃饭有讲究》,第一册第3单元。《吃饭有讲究》这一主题与我们的日常生活休戚相关,因此在教学时,可以很好地联系生活实际,调动学生的记忆力、思维力和语言表达能力。引导学生从小追求有文化品质的好生活。通过本课教学,帮助学生初步养成良好的就餐习惯。二、说学情一年级学生的学生身心发展特殊,上课注意力不集中,容易开小差,课上需提醒,才能参与课堂活动。三、说教学目标学生的接受能力、智力情况和思维能力不同,结合其特点,我提出了:1、教育学生吃饭讲究卫生,学习正确洗手方法。2、教育学生在餐桌上要讲礼仪。过程与方法 通过教学活动,学生提高其观察能力、辨别能力,提高其参与课堂的积极性。 让学生初步养成良好的饭前饭后卫生习惯。
在上周,孩子们都很关注班上每天来了哪些小朋友。点名后,我们老师会和小朋友说说每来幼儿身体状况,在家休息情况等。由此,在小朋友心中产生了相互关爱的情感体验。最近,我们两位老师为了了解孩子的身体健康情况,常在节假日打电话给孩子。因此,他们交往范围由家庭成员扩大到老师,对老师产生了认同感、亲近感。本班幼儿有时能用简单的言语向别人表达自己的感受和需要,还叙述生活中的事。但是,3-4岁的幼儿独白是很不流畅,带有很大的情景性。利用当前大众媒体中的公益广告,引出“打电话”音乐活动。鼓励强化幼儿想和许多人(爸爸妈妈爷爷奶奶老师等)打电话,亲身体验和许多朋友打电话的的快乐。
说教材本课时的教学要点是引导学生分析失信的原因,找到解决的方法,并懂得和做到对自 己守信。数师可以按照教材内容的编排顺序进行教学,先设计讨论活动,引导学生针对具体的失信行为分析原因,井能对症下药,找出相应的解决方法,然后转向“对自己说话算数" 的内容。对此,教师可以通过数材中“张明对自己说话算数”的内容,引导学生思考并讨论 为什么要对自己守信,从而让他们认识到无论是对别人还是对自己都旻言行一致、说话算数.教师旻强调对自己说话算数主要靠自觉和白律,并让学生学习史多的守信方法,并运用在自己的守信实跋中。学情分析诚信对学生来说是老生常谈,在学校或是日程的生活中,老师、长辈总会要求孩子能做到诚实,不说谎。但实际上,很多孩子乱下保证,却常常做不到,导致失信,但在他们眼中这并不算是不诚信。因此我们需要在根本上改变他们的这一认识与看法。通过角色扮演在帮别人改正说话不算数的毛病过程中,自 纠身上存在的失信问题并改正。
说目标:幼儿学习音乐的目的是培养他们的审美感受,体验音乐带来的快乐。正如《纲要》中所说应支持幼儿富有个性和创造性的表达。因此我顶的能力目标:是根据人物特点,将音乐形象与故事中的人物形象相匹配。技能目标:是在音乐中大胆试用动作、表情等表现人物形象,体验表演的快乐。情感目标:是在活动中体验表演的快乐,通过表演,懂得不要轻信陌生人的道理。说重点:分析人物特点是本次活动的重点。说难点:听辨音乐,创编与人物相匹配的动作,是本次活动的难点。说准备:为了吸引孩子们的注意力,并对参与活动发生浓厚的兴趣,我在活动前进行了多方面的准备。1、森林的情景创设。2、课件(小红帽的故事)3、代表四个人物的音乐:《森林狂想曲》《天使小夜曲》《波斯市场》《拉德斯基进行曲》4、表演道具(红帽子、头巾、头饰、猎枪等)
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
本节通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.数学学科素养1.数学抽象:二分法的概念;2.逻辑推理:用二分法求函数零点近似值的步骤;3.数学运算:求函数零点近似值;4.数学建模:通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用.
《数学1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本节课要求学生根据具体的函数图象能够借助计算机或信息技术工具计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法,从中体会函数与方程之间的联系;它既是本册书中的重点内容,又是对函数知识的拓展,既体现了函数在解方程中的重要应用,同时又为高中数学中函数与方程思想、数形结合思想、二分法的算法思想打下了基础,因此决定了它的重要地位.发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。课程目标 学科素养1.通过具体实例理解二分法的概念及其使用条件.2.了解二分法是求方程近似解的常用方法,能借助计算器用二分法求方程的近似解.3.会用二分法求一个函数在给定区间内的零点,从而求得方程的近似解. a.数学抽象:二分法的概念;b.逻辑推理:运用二分法求近似解的原理;
新知探究:向量的减法运算定义问题四:你能根据实数的减法运算定义向量的减法运算吗?由两个向量和的定义已知 即任意向量与其相反向量的和是零向量。求两个向量差的运算叫做向量的减法。我们看到,向量的减法可以转化为向量的加法来进行:减去一个向量相当于加上这个向量的相反向量。即新知探究(二):向量减法的作图方法知识探究(三):向量减法的几何意义问题六:根据问题五,思考一下向量减法的几何意义是什么?问题七:非零共线向量怎样做减法运算? 问题八:非零共线向量怎样做减法运算?1.共线同向2.共线反向小试牛刀判一判(正确的打“√”,错误的打“×”)(1)两个向量的差仍是一个向量。 (√ )(2)向量的减法实质上是向量的加法的逆运算. ( √ )(3)向量a与向量b的差与向量b与向量a的差互为相反向量。 ( √ )(4)相反向量是共线向量。 ( √ )
分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01学生板书完成,并说明根据什么?略例3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的 , 和 。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个?解:=60-30-20-15 =-5答:不够借,还缺5个篮球。练习巩固:第41页1、2、7、探究活动 (1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律? (2)逆用分配律 第42页 5、用简便方法计算(三)课堂小结通过本节课的学习,大家学会了什么?本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.(四)作业:课本42页作业题
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法总结:如果按照先算乘法,再算加减,则运算较繁琐,且符号容易出错,但如果逆用乘法对加法的分配律,则可使运算简便.探究点三:有理数乘法的运算律的实际应用甲、乙两地相距480千米,一辆汽车从甲地开往乙地,已经行驶了全程的13,再行驶多少千米就可以到达中点?解析:把两地间的距离看作单位“1”,中点即全程12处,根据题意用乘法分别求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到达中点.方法总结:解答本题的关键是根据题意列出算式,然后根据乘法的分配律进行简便计算.新课程理念要求把学生“学”数学放在教师“教”之前,“导学”是教学的重点.因此,在本节课的教学中,不要直接将结论告诉学生,而是引导学生从大量的实例中寻找解决问题的规律.学生经历积极探索知识的形成过程,最后总结得出有理数乘法的运算律.整个教学过程要让学生积极参与,独立思考和合作探究相结合,教师适当点评,以达到预期的教学效果.
解析:∵ab>0,根据“两数相除,同号得正”可知,a、b同号,又∵a+b<0,∴可以判断a、b均为负数.故选D.方法总结:此题考查了有理数乘法和加法法则,将二者综合考查是考试中常见的题型,此题的侧重点在于考查学生的逻辑推理能力.让学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.教学设计可以采用课本的引例作为探究除法法则的过程.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象.并讲清楚除法的两种运算方法:(1)在除式的项和数字不复杂的情况下直接运用除法法则求解.(2)在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法,然后统一用乘法的运算律解决问题.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.三、板书设计用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步骤①化为一般形式②确定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判别式经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
二、填空题1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.2.当x=______时,代数式x2-8x+12的值是-4.3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.三、综合提高题1.用公式法解关于x的方程:x2-2ax-b2+a2=0.2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=- ,x1·x2= ;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况
易错提醒:利用b2-4ac判断一元二次方程根的情况时,容易忽略二次项系数不能等于0这一条件,本题中容易误选A.【类型三】 根的判别式与三角形的综合应用已知a,b,c分别是△ABC的三边长,当m>0时,关于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有两个相等的实数根,请判断△ABC的形状.解析:先将方程转化为一般形式,再根据根的判别式确定a,b,c之间的关系,即可判定△ABC的形状.解:将原方程转化为一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有两个相等的实数根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。