提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

小班数学教案 复习几何图形

  • 大班科学教案:我是小问号

    大班科学教案:我是小问号

    3、会运用已有的经验解答问题,体验一问一答的乐趣。活动准备:1、认知准备:了解动画片《聪明的一休》及一休的提问;认识“?”符号。2、物质准备:布置科学宫场景(动脑筋爷爷画像,有关动物、植物、自然现象等科学图片、卡片、图书、实物,地球仪、小实验操作用具,及时贴问号符号,小问号娃娃胸饰);有关神秘的地球录像资料,《聪明的一休》音乐磁带、录音机、白磁带。活动过程:一、激发求知兴趣,争当小问号娃娃1、介绍动脑筋爷爷和科学宫。小朋友看,这里是科学官,动脑筋爷爷是最有学问的人了,今天,他要请我们大班的小朋友到科学宫来玩,你们高兴吗?动脑筋爷爷说来这里玩的小朋友发现不懂的总会提出许多的问题,你们如果发现有不懂的该怎么办呢?2、 幼儿争当小问号娃娃,自己佩带小问号胸饰。动脑筋爷爷叫爱提问题的小朋友是小问号,你们谁愿意当小问号?以前,总是老师提问题,今天,是小问号来提问题了。请你们赶快戴上小问号娃娃的标志,自己去看一看,你有什么问题。

  • 大班科学教案:小鸟的死因

    大班科学教案:小鸟的死因

    活动目标: 1、通过观察、寻找、分析,了解容易使鸟儿死亡的原因,培养幼儿的探索欲望。 2、愿意大胆表达自己的猜测,并乐意和同伴交流自己的发现。 3、萌发幼儿爱护鸟儿、保护鸟儿的意识。 活动准备: 1、保护好画眉鸟死亡的现场。 2、供幼儿记录的纸、笔。 活动过程: 一、谈话引出话题 师:刚才我们班里发生了一件什么事情?我们班的画眉鸟死了,你的心里有什么感受? 二、讨论猜测小鸟的死因 1、上午的时候小鸟还是活着的,我们午睡的时候它就死了,你认为是什么原因使小鸟死掉的呢?(幼儿自由探讨) 2、幼儿自由猜测发言,师在黑板上帮助幼儿记录

  • 中班科学教案:小球站稳了

    中班科学教案:小球站稳了

    2、探索发现利用一张纸使小球稳定的方法。3、能积极动脑筋想办法,解决问题。 活动准备:物质材料准备:乒乓球和纸。知识经验准备:幼儿有玩球的经验,知道球滚动的特性。环境准备:体育区角投放的兵乓球。

  • 幼儿园小班科学教案 轮子

    幼儿园小班科学教案 轮子

    2、通过游戏让幼儿知道轮子是可以滚动的活动准备:PPT、幼儿带来的各种车子活动过程:  一、介绍各种不同数量轮子的车  今天我给你们带来一个神奇的宝贝,你们知道是谁吗?  (一)出示两只轮子,引起兴趣1、你们看这是什么?有几只?2、你见过的两只轮子的车吗?是什么车?  小结:两只轮子的车有自行车、电动车、摩托车  过渡:还想接着往下看吗?

  • 《小学端午节》主题班会教案

    《小学端午节》主题班会教案

    主b:一直到今天,每年五月初五,中国百姓家家都要浸糯米、洗粽叶、包粽子,其花色品种琳琅满目。除了这些,你们还知道端午节哪些习俗的由来呢?(生结合屈原和黄巢的故事谈喝雄黄酒、悬艾草的由来) 主b:端午的时候,人们还要佩香囊、撮五彩线呢,你们知道五彩线由哪五种颜色组成呢?人们为什么撮五彩线呢? (五彩线是用五种颜色的线制成。这五种颜色不是随便用哪五种颜色就行,而必须是 青、白、红、黑和黄色。这五种颜色从阴阳五行学说上讲,分别代表木、金、火、水、土。同时,分别象征东、西、南、北、中,蕴涵着五方神力,可以驱邪除魔,祛病强身,使人健康长寿。五彩线象征五色龙,系五色线可以降服妖魔鬼怪。民间喜欢用五彩线系在儿童手腕上(男左女右),俗称“长命线”,以祈求压邪避毒,长命百岁。) 3.端午赛诗会。 主a:我们知道屈原是一位伟大的爱国诗人,为了纪念他,所以有人把端午节还称作“诗人节”。现在谁来朗诵一首与端午节有关的诗篇。(生可以选择其他与端午节有关的诗篇)

  • 人教版新课标小学数学六年级下册负数教案

    人教版新课标小学数学六年级下册负数教案

    (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。(6)引导学生观察:A、从0起往右依次是?从0起往左依次是?你发现什么规律?B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?(7)练习:做一做的第1、2题。(二)教学例4:1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  • 人教部编版语文九年级上册综合性学习走进小说天地教案

    人教部编版语文九年级上册综合性学习走进小说天地教案

    课件出示:(1)我的小报设计构想:古典名著是我最喜欢的读本,除了老师规定的板块设计外,我增加了“人物形象我评说”的新板块,我画了人物简笔画,画面配上了简洁的评语……(2)我的小小说《找钱》:我先读一读我的小说,再说一说我创作小说的经验。……丢钱是我们生活中常有的事情,材料就选自我们身边。找钱的过程最好安排得一波三折,情节要有波澜,我把两个身边同学丢钱找钱的事情融合在一起,通过三次满怀希望的寻找和三次失望的转折,使得小说情节引人入胜。小说中大量的人物心理描写,凸显了人物性格——疑神疑鬼,没心没肺。最后小说的结尾出人意料,却又在情理之中……【设计意图】综合性学习的汇报课,检查学生自主探究学习的成果。四小组分四个不同的板块分别汇报,内容清晰,任务明确。有个人汇报评价得分,也有小组综合评价得分,评出优胜者和优胜小组。通过竞争激发课堂活力,通过合作增强集体荣誉感,通过展示刺激表现欲,让学生成为真正的课堂主人。

  • 三角形内角和定理教案教学设计

    三角形内角和定理教案教学设计

    活动内容:① 已知,如图,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求证:AD∥BC分析:要证明AD∥BC,只需证明“同位角相等”,即需证明∠DAE=∠B.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴AD∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.

  • 人教A版高中数学必修一正弦函数、余弦函数的图像教学设计(2)

    人教A版高中数学必修一正弦函数、余弦函数的图像教学设计(2)

    由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此本节课利用单位圆中的三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.课程目标1.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.2.理解正弦曲线与余弦曲线之间的联系. 数学学科素养1.数学抽象:正弦曲线与余弦曲线的概念; 2.逻辑推理:正弦曲线与余弦曲线的联系; 3.直观想象:正弦函数余弦函数的图像; 4.数学运算:五点作图; 5.数学建模:通过正弦、余弦图象图像,解决不等式问题及零点问题,这正是数形结合思想方法的应用.

  • 人教A版高中数学必修一对数函数的图像和性质教学设计(1)

    人教A版高中数学必修一对数函数的图像和性质教学设计(1)

    本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.2节《对数函数的图像和性质》 是高中数学在指数函数之后的重要初等函数之一。对数函数与指数函数联系密切,无论是研究的思想方法方法还是图像及性质,都有其共通之处。相较于指数函数,对数函数的图象亦有其独特的美感。在类比推理的过程中,感受图像的变化,认识变化的规律,这是提高学生直观想象能力的一个重要的过程。为之后学习数学提供了更多角度的分析方法。培养和发展学生逻辑推理、数学直观、数学抽象、和数学建模的核心素养。1、掌握对数函数的图像和性质;能利用对数函数的图像与性质来解决简单问题;2、经过探究对数函数的图像和性质,对数函数与指数函数图像之间的联系,对数函数内部的的联系。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;渗透类比等基本数学思想方法。

  • 大班科学教案:小飞艇变小汽艇

    大班科学教案:小飞艇变小汽艇

    2、通过小飞艇变小汽艇的环节,培养幼儿的观察力、想象力和动手操作能力。 3、让幼儿在玩中不断探索,体验科技活动的乐趣。 活动准备:1、幼儿操作的小飞艇若干过。 2、大水盆6个、餐巾若干。 3、火箭升天的图片、人游泳的图片。 活动重点:感知空气对流成风产生动力,可以推动一些物体运动。 活动难点:通过小飞艇变小汽艇,培养幼儿的观察力、想象力。 活动过程:一、小飞艇 1、出示小飞艇让幼儿观察。 2、提问: 它的名字叫小飞艇,谁能知道它是怎么飞的? (让幼儿充分的说) 3、动手操作 (做成功的幼儿来给其他小朋友分享自己是怎么做的然后再继续操作)

  • 《原始狩猎图》教案

    《原始狩猎图》教案

    教学过程:1、情景创设、音乐表演:乐曲《原始狩猎图》展示了一幅远古时期人们在夜幕中狩猎的画面,刻画了先民们从发现猎物时的激动到捕获猎物后的狂喜场面。这些场面对我们的学生来说是陌生的,如果让学生去感受一些陌生的东西,容易产生隔膜,难以调动学习的主动性。针对这样存在的问题,我为学生创设了情景,然后请一些同学在音乐情景下表演。以音乐《原始狩猎图》的“引子”作为导入,随着我的描绘补充演绎出完整的远古人狩猎的场景,使学生感受出音乐的古朴音调、神秘和粗犷的音乐风格及独特的音响色彩。2、分段欣赏:乐曲《原始狩猎图》是一首情节性、故事性很强的作品。让同学们再认真聆听过作品后分段赏析每个部分的音乐带给我们的不同的感受。让同学们说出自己所听到的每个不同的部分所讲述的内容。3、学习演奏:让同学们选出大家都比较感兴趣的段子,在老师的带领下大家一起来学习用骨笛演奏。并让大家分析骨笛的声音与一般竹笛声音的不同之处。4、创编动作、情景复现:根据钱兆熹的骨哨与乐队《原始狩猎图》之“庆功”和“尾声”,以及壁画、岩刻上的舞蹈动作,请学生手拉手,老师带头,随着音乐,编创造型和动作,跳起欢庆狩猎成功的舞蹈。5、小结,结束本课。

  • 《原始狩猎图》教案

    《原始狩猎图》教案

    教学过程:(一)创设情景、借景导入。以音乐《原始狩猎图》的“引子”作为导入,随着我的描绘补充演绎出完整的远古人狩猎的场景,使学生感受出音乐的古朴音调、神秘和粗犷的音乐风格及独特的音响色彩。(二)探访远古、艺术再现。1、欣赏关于远古时期的壁画、岩刻。内容包括:动物、放牧、舞蹈、战争等。绘画手法:壁画一般是勾线涂色;岩刻一般是敲凿和磨刻。绘画工具:壁画用的是苔藓类植物、兽毛,颜料是动物的脂肪和血调和的天然矿物;岩刻用的是石头。2、讨论:远古人为什么会将这些动物刻画在岩石或洞穴中呢?远古人或是为了了解生活中的动物,或是为了记录某一次打猎的过程,或是为了记录每次打猎的成绩,或是为了祈求明天能打到更多的猎物等等原因。3、了解古代的一些乐器(埙、骨哨、骨笛等,链接音频)。(三)欣赏音乐、探究讨论。1、聆听音乐骨哨与乐队《原始狩猎图》之“狩猎”。(1)想想音乐所表现的画面情景。(2)说说乐器“骨哨”和“埙”的音色特点。(3)谈谈听完音乐后的感受。

  • 《原始狩猎图》教案

    《原始狩猎图》教案

    教学过程:(一)认真聆听这首音乐,配合老师展示的一些关于原始人类狩猎的图片逐渐进入情境。(二)完整欣赏、借景抒情。1、聆听钱兆熹的骨哨与乐队《原始狩猎图》之“庆功”和“尾声”,让学生根据音乐,描绘出想象中的狩猎后古人们跳舞欢庆和散去的场景。2、欣赏花山岩画、舞蹈纹彩陶盆。3、模仿古人的舞蹈动作,简单的举手、手拉手等动作。4、分析乐曲的结构:引子——狩猎——庆功——尾声。5、探究讨论、情感抒发。(1)音乐与情景内容是怎样结合在一起的?(2)古代人为什么要聚在一起狩猎?对我们有什么启发?(3)体会艺术与生活的关系、集体主义精神。(三)艺术拓展、电影与古乐。1、电影《菊豆》与陶埙。2、编钟、编磬。让学生观看影片中配有乐器音乐的片段,在声音与画面,音乐与内容的交互中熟悉古代乐器的声音、音乐的内涵及古乐的魅力。(四)师生总结、情感升华。乐曲采用简洁朴素的音乐语言,充分发挥了骨哨独特的音色和淳朴的艺术魅力,展示了一幅远古时期人们在夜幕中狩猎的画面,把先民们从发现猎物时的激动心情到捕获猎物后的狂喜场面刻画得栩栩如生。谁说国乐不如洋?中华五千年灿烂文明,中国古典音乐有着极高的艺术境界。热爱国乐吧!因为它是我们的母体文化之一!

  • 北师大初中九年级数学下册二次函数y=ax2+bx+c的图象与性质2教案

    北师大初中九年级数学下册二次函数y=ax2+bx+c的图象与性质2教案

    1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)

  • 北师大初中九年级数学下册二次函数y=ax2+bx+c的图象与性质1教案

    北师大初中九年级数学下册二次函数y=ax2+bx+c的图象与性质1教案

    解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用

  • 北师大初中九年级数学下册二次函数y=x2和y=-x2的图象与性质2教案

    北师大初中九年级数学下册二次函数y=x2和y=-x2的图象与性质2教案

    【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究

  • 北师大初中九年级数学下册二次函数y=a(x-h)2+k的图象与性质1教案

    北师大初中九年级数学下册二次函数y=a(x-h)2+k的图象与性质1教案

    (3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.

  • 北师大初中九年级数学下册二次函数y=x2和y=-x2的图象与性质1教案

    北师大初中九年级数学下册二次函数y=x2和y=-x2的图象与性质1教案

    雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.

  • 北师大初中九年级数学下册二次函数y=ax2和y=ax2+c的图象与性质1教案

    北师大初中九年级数学下册二次函数y=ax2和y=ax2+c的图象与性质1教案

    变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合

上一页123...323334353637383940414243下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!