1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.③符号语言:任意a?α,都有l⊥a?l⊥α.
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
1.观察(1)如图,在阳光下观察直立于地面的旗杆AB及它在地面影子BC,旗杆所在直线与影子所在直线的位置关系是什么?(2)随着时间的变化,影子BC的位置在不断的变化,旗杆所在直线AB与其影子B’C’所在直线是否保持垂直?经观察我们知道AB与BC永远垂直,也就是AB垂直于地面上所有过点B的直线。而不过点B的直线在地面内总是能找到过点B的直线与之平行。因此AB与地面上所有直线均垂直。一般地,如果一条直线与一个平面α内所有直线均垂直,我们就说l垂直α,记作l⊥α。2.定义:①文字叙述:如果直线l与平面α内的所有 直线都垂直,就说直线l与平面α互相垂直,记作l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做交点.②图形语言:如图.画直线l与平面α垂直时,通常把直线画成与表示平面的平行四边形的一边垂直.
6.例二:如图在正方体ABCD-A’B’C’D’中,O’为底面A’B’C’D’的中心,求证:AO’⊥BD 证明:如图,连接B’D’,∵ABCD-A’B’C’D’是正方体∴BB’//DD’,BB’=DD’∴四边形BB’DD’是平行四边形∴B’D’//BD∴直线AO’与B’D’所成角即为直线AO’与BD所成角连接AB’,AD’易证AB’=AD’又O’为底面A’B’C’D’的中心∴O’为B’D’的中点∴AO’⊥B’D’,AO’⊥BD7.例三如图所示,四面体A-BCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=2.求EF的长度.解:取BC中点O,连接OE,OF,如图。∵E,F分别是AB,CD的中点,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE与OF所成的锐角就是AC与BD所成的角∵BD,AC所成角为60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1当∠EOF=60°时,EF=OE=OF=1,当∠EOF=120°时,取EF的中点M,连接OM,则OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
导语在必修第一册中,我们研究了函数的单调性,并利用函数单调性等知识,定性的研究了一次函数、指数函数、对数函数增长速度的差异,知道“对数增长” 是越来越慢的,“指数爆炸” 比“直线上升” 快得多,进一步的能否精确定量的刻画变化速度的快慢呢,下面我们就来研究这个问题。新知探究问题1 高台跳水运动员的速度高台跳水运动中,运动员在运动过程中的重心相对于水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系h(t)=-4.9t2+4.8t+11.如何描述用运动员从起跳到入水的过程中运动的快慢程度呢?直觉告诉我们,运动员从起跳到入水的过程中,在上升阶段运动的越来越慢,在下降阶段运动的越来越快,我们可以把整个运动时间段分成许多小段,用运动员在每段时间内的平均速度v ?近似的描述它的运动状态。
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.
温故知新 1.离散型随机变量的定义可能取值为有限个或可以一一列举的随机变量,我们称为离散型随机变量.通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.随机变量的特点: 试验之前可以判断其可能出现的所有值,在试验之前不可能确定取何值;可以用数字表示2、随机变量的分类①离散型随机变量:X的取值可一、一列出;②连续型随机变量:X可以取某个区间内的一切值随机变量将随机事件的结果数量化.3、古典概型:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。二、探究新知探究1.抛掷一枚骰子,所得的点数X有哪些值?取每个值的概率是多少? 因为X取值范围是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
1.确定研究对象,明确哪个是解释变量,哪个是响应变量;2.由经验确定非线性经验回归方程的模型;3.通过变换,将非线性经验回归模型转化为线性经验回归模型;4.按照公式计算经验回归方程中的参数,得到经验回归方程;5.消去新元,得到非线性经验回归方程;6.得出结果后分析残差图是否有异常 .跟踪训练1.一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了6组观测数据列于表中: 经计算得: 线性回归残差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分别为观测数据中的温度和产卵数,i=1,2,3,4,5,6.(1)若用线性回归模型拟合,求y关于x的回归方程 (精确到0.1);(2)若用非线性回归模型拟合,求得y关于x回归方程为 且相关指数R2=0.9522. ①试与(1)中的线性回归模型相比较,用R2说明哪种模型的拟合效果更好 ?②用拟合效果好的模型预测温度为35℃时该种药用昆虫的产卵数.(结果取整数).
作为全国公民法治素养提升行动8个试点地区之一,成都的试点工作目前正处于全面实施阶段。作为试点地区的一分子,新津区勇挑试点重担,在精准普法方面下功夫,第一时间制定试点工作方案,细化24条措施,新津区普兴街道岳店社区、新津实验高中被确定为成都市公民法治素养观测点位。在实施国家工作人员“法治提能”行动中,新津区将法治建设成效纳入区管领导班子和领导干部年度考核内容,区政府常务会开展会前学法72场次,全区66家单位接入四川省学法考法平台,共计2766名国家工作人员参与年度学法考法。实施青少年“学法筑基”行动的关键,就是要把法律知识变得有趣,让青少年听得懂、学得会、记得住。为此,新津区选派54名政法干警担任中小学校法治副校长,打造新津中学、新津一小、新津实验高中3个特色青少年法治教育阵地,并依托法治教育阵地开展专题教育活动180余场。
三是课后延时服务活动形式多样。课服期间,采用室内活动和室外活动相结合,形式多样:诵读、音乐、速算、书法、象棋、演讲、美术、手工、体育、乒乓球、插花艺术等各种兴趣活动等,培养学生兴趣爱好,确保学生身体、心理的健康发展,更好的提高学生的学习效率,促进学生全面健康成长。该校还创造性开展厨艺分享课,不仅能鼓励孩子们能积极参与家庭劳动,培养同学们的劳动技能,体会劳动的乐趣,也让孩子们学会照顾自己、学会分享、懂得感恩。依照上级文件精神,各学校对课后服务开展情况进行成本核算收取,坚持两个原则:一是自愿原则,二是多退少不补原则;对建档立卡、低保户等家庭经济困难学生免收课后服务费。课后服务费用统一使用,专款专用。学校根据课后服务实际情况及时向学生、家长、社会公示。三、存在问题(一)课后服务能力有待进一步提升。限于我县音体美等专业教师少,课后服务能力还有待于进一步提升。
(四)持续激发片区活力,开创新局面。一是进一步坚持目标导向。结合片区特色亮点,紧扣片区定位和重大项目布局,聚力攻坚片区主导方向,全力配合片区搞好基础设施建设。二是进一步压实工作责任。立足重点片区工作实际,全面梳理“四考”(新增项目、新增入库、土地出让、集中开工)“三单”(基础设施建设清单、产业项目帮扶清单、招商引资项目清单),进一步完善考评细则,以年终绩效考核为抓手压实目标责任,以考核见真章,以考核促实效,充分激发十大重点片区比学赶超、奋勇争先的干劲。三是进一步强化协调调度。坚持目标导向与问题导向相统一,主动跟踪服务,对重点片区道路建设、招商引资、土地出让、流程审批、控规修编等方面存在的问题,分层级有序调度,逐个项目研究、逐个问题破解,稳步推进,推动项目早落地、早开工、早投产、早入库、早增效。志之所趋,无远弗届;志之所向,无坚不入。站在新的起点上,我们将保持发展定力,增强自身能力,坚定凝心聚力谋发展的决心不动摇,乘势而上开新局,砥砺奋进开新篇,为全面建设全国一流现代化强区,奋力谱写中国式现代化的我区篇章贡献更大公建力量。
(二)城乡居民医疗保险工作。一是严格执行政策,采取有效措施,不折不扣的完成好2024年的征缴工作目标任务。二是做好城乡居民零星报销及系统信息维护等常规工作。三是搞好城乡居民医疗保险工作的来信来访,收集并及时向上级反映医疗保险中出现的新情况,配合上级医保部门做好医疗保险的调研工作,始终贯彻以人为本的原则,树立全心全意为人民服务的宗旨,做好做活服务,提升服务质量,创新服务模式,不仅使群众成为参加医疗保险的主体,更是真正的受益者,把我们的工作做到程序便捷化,创建文明服务窗口,真正使医疗保险工作达到政府得民心,群众得实惠,医保工作得发展的工作目标。(三)便民服务中心管理工作。一是加强自身建设,进一步健全、完善各项管理制度,加强效能监督管理,加强对中心工作人员的考核制度的建立。二是依法行政,规范运行。
8、加强对音、体、美、等课程实施的监督与检查,确保上足课节。9、将学困生转化工作及优生培养工作落到实处。提高对学困生的关注度,加强对学困生的心理辅导及课业辅导。10、每周一次级部长会,每月一次学科长会,建立教务会议记录,学科教研、活动记录,教师上交材料记录。11、本学期共21周,实际授课17周。五、教学工作配档表九月1、划分班级,安排好教师课务,排好课程表。2、参加XX市教研室召开的小学教学教研工作会议3、安排各科教师参加XX市教研室组织的学科研讨。4、制定好各种教学、教研工作计划。5、安排并开展本学期公开课活动。6、印发各种表册。7、对小一新生建档。8、做好十一长假的作业布置工作十月1、组织学习烟台市小学教学常规、课程标准的学习。2、检查集体备课情况。3、进行书法、口算、口语表达技能比赛。4、积极准备上级的专项教学常规督导。5、积极打磨XX市学科优质课。
学校还设立举报箱公布举报热线暑期安排值班人员及时收集有关教师师德师风情况的反馈息。从多角度、多渠道强化师德师风建设每位教师都受社会和人民的监督。五、严格查处有偿家教根据教育局规定严禁教师从事有偿家教。除了会议上多次强调以外我校教师还签订“关于拒有偿家教”的承诺书。同时师德师风专项巡查和整治领导小组利用暑假期间不定期深入群众中去通过走访调查、实地考察等途径实时掌握我校教师是否存在“有偿家教”的问题一经发现及时制止并汇报教育局。至今止我校并未发现有师从事有偿补课的现象。总之通过狠抓师德师风建设工作使学校教师深深体会到只有制度完善、强过程管理发现问题及时处理才能证师德建设有成效。这次暑期师德师风专项巡查和整治以法制学习教育和组织教师进行自查依托以“以法治校”的制度管理、科学评估、重在激励手段形成良好的教师队伍树立教师的职业道德形象。
五、严格查处有偿家教根据教育局规定,严禁教师从事有偿家教。除了会议上多次强调以外,我校教师还签订“关于拒绝有偿家教”的承诺书。同时,师德师风专项巡查和整治领导小组利用暑假期间,不定期深入群众中去,通过走访调查、实地考察等途径,实时掌握我校教师是否存在“有偿家教”的问题,一经发现,及时制止并汇报教育局。至今为止,我校并未发现有老师从事有偿补课的现象。总之,通过狠抓师德师风建设工作,使学校教师深深体会到:只有制度完善、加强过程管理,发现问题及时处理,才能保证师德建设有成效。这次暑期师德师风专项巡查和整治,以法制学习教育和组织教师进行自查为依托,以“以法治校”的制度管理、科学评估、重在激励为手段,形成良好的教师队伍,树立教师的职业道德形象。
(三)场内场外“两场联动”,全力维护交易市场秩序。一是完善投诉举报接收、转办、反馈工作机制。电子监管平台实现投诉举报全流程电子化在线办理,平台将收到的投诉质疑和相关线索第一时间转送各行业监管部门,质疑事项应于受理之日起7个工作日内作出书面答复,投诉、举报事项原则上应于受理之日起15个工作日内办理完毕,并书面答复事项提出人,如未按时限和要求完成答复,平台将会推送至各单位纪检组处,最终的答复事项在中心网站和各行业部门网站予以公示,完成“发现-监管-公示”的闭环管理。各行业部门按照职能职责制定投诉举报机制,明确处理结果反馈时限,并按时反馈办理结果,做到及时受理、限时办结、按时反馈。二是建立问题和线索联动处理机制。建立监管协同工作台和虚拟联席办公厅,实现所有部门之间都能实时或定点定向协同办公,完成案件资料共享、案件同步分析、办案协助、联席会办,形成多部门大监管格局。
(二)场外探索协同监管模式,持续拓展交易监管维度。中心以优化营商环境为基础,深入推进公共资源交易监督管理体制创新,在全省先行先试开展协同综合监管模式,监管平台已建成,下一步我们将重点开展以下工作:一是建立公共资源交易监管工作联席会议机制。建立由市发展和改革委员会牵头,市公共资源交易管理委员会成员单位参加的公共资源交易监管工作联席会议机制。发挥综合监管优势,建立交易中心、行业监管、执纪执法“三方联动”的监管链条,以交易平台为信息枢纽,实现行业监管与执纪执法有效衔接,合力打击违法违规行为。原则上,每季度召开一次联席会议,遇到重大风险、突出问题或其他必要情况,可由成员单位向公管办提请召开联席会议。二是制定统一公共资源交易监管权力和责任清单。
(六)6月份以来在FMXXX交通广播分别在早、中、晚高峰时段循环播放致全州无偿献血者的感谢语、无偿献血政策宣传等相关内容。(七)通过血站管理信息系统向在我站参加无偿献血的献血者发送节日祝福短信15万余条。(八)6月份来通过我站微信公众号在“高校专栏”开展高校无偿献血知识问卷调查,分别在XX学院、XX职业技术学院、XX职业技术学院等院校进行,目的是进一步了解青年学生献血动机、科普献血知识,为以后高校无的偿献血工作开展提供指导。(九)世界献血者日前夕,我站制定了“纪念第二十个世界献血者日”纪念奖杯500份,并于6月13-14日当天在各献血点发放,让献血更有“纪念”价值。四、硕果成效显著,促进献血事业(一)从6月12日到6月15日开展世界献血者日宣传活动以来,前到我站成功献血达733人次,合计献血量1217U。
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。