2. 培养观察、比较能力和初步的判断推理能力。活动准备: 1.教具:黑白序列的排序图样。2.学具:①幼儿分组操作材料:a 铺地砖b 串彩链c 围围墙d 排排队 ②花片 ③黑白方块若干。3.环境创设:小动物的家。活动过程:(一)以小朋友为“小动物布置新家”引入课题。(二)幼儿自主探索物体简单的排序规律。1.幼儿分组操作。a 铺地砖:提供蓝、白两种颜色的泡沫地砖,让幼儿按颜色变化规律排序 b 围围墙:提供四种颜色炮弹玩具,让幼儿按颜色及节数按规律排序。c 做彩链:提供不同长短、宽窄、颜色长条手工纸让幼儿根据纸条多种特征串成彩链条。d 种树:提供高矮、品种不同的树木,让幼儿按其形状、高矮不同的规律排序。
(一)观图激趣、设疑导入 出示课件的第二张幻灯片。师:请说出与老师相反的词语或句子。向上看。向东走50米。小维在知识竞赛中赢了20分。小明在银行存入300元钱。零上10℃。生:……。师:这就是我们今天要学习的负数。板书:负数(二)探究新知1、出示课件的第三张幻灯片。师:请大家仔细观察上图,你发现什么问题?学生以小组为单位交流。学生以小组为单位汇报交流结果。生:0℃表示什么意思呢?生:3℃和-3℃表示的意思一样吗?师:小组内交流解决上述问题。学生以小组为单位探究交流。学生以小组为单位汇报探究交流结果。老师对学生汇报给予适当的评价。老师课件出示答案。师:0℃表示淡水结冰的温度,比0℃低的温度叫零下温度,通常在数字前加“-”(负号),如-3 ℃表示零下3摄氏度,读作负三摄氏度;比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上三摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。
说教材。《鸽巢问题》包含着一个重要而又基本的数学原理——“鸽巢原理”,应用它可以使生活中很多有趣的,又相当复杂的问题,得以简单的解决。我要说的是第一课时,本节教材通过几个直观的例子,借助实际操作,向学生介绍“鸽巢原理”,使学生在理解的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢原理”去解决。说学情虽然六年级学生的逻辑思维能力、小组合作能力和动手操作能力都有了较大的提高,但因为鸽巢原理的实质是揭示了一种存在性,比较抽象,因此要真正让小学生深刻理解,还是很有挑战性的。说教学目标根据《新课程标准》的要求和学生已有的知识基础和认知能力,确定以下教学目标:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”。会用“鸽巢原理”解决简单的实际问题。通过“鸽巢原理”的灵活运用,感受数学的魅力,渗透数学模型思想。
一、说教材小数的初步认识是在学生熟练地掌握了分数的基础上进行学习的内容。本课内容包括认识一位小数、两位小数和它的读、写法。认识一位小数和两位小数是小数的初步认识中最基础的知识,学习小数不仅为学生准确清晰地理解小数的含义,也为今后系统地学习小数的知识打下基础。同时,小数的知识在实际生活中应用较广泛,有利于学生运用所学知识技能来解决一些实际的问题。学情分析:小学三年级的学生对小数并不是全然不知,在日常生活中已经有所接触,但由于小数是分数的另一种表现形式,其意义具有一定程度的抽象性,学生要深刻理解小数的意义,还有一定的困难,针对这一现状,教学中应充分考虑学生的生活经验,利用生活与数学知识的契合点,重视直观、引导、注重启发,利用小数与分数之间的联系,让学生亲历小数的形成过程。
村料一 宋代是中国历史上最具魅力的时代。……到了宋代便超越西亚而居于世界前列。……由于宋代文明的刺激,欧洲文明向前发展了。宋代文明深深地响了世界。——日本史学家官崎市定材料二 18世纪中期,术材匱乏引发能源危机,使英国人毅然在热能和机械能领域实现转轨,通过调整能源结构实现了国家整体性产生变迁,完成了经济史的重大转型,由此引发了第一次工业革命。在始于19世纪末的第二次工业命中,电能的广泛应用带领人类社会步入了电气时代……一一朱启贵《第三次工业革命浪潮下的转型选择》(1)材料一“宋代文明”中的某项成果为环球航行和新大陆的发现提供了重要的技术支持,这项成果具体是指什么?(2分)
材料一: 天天6个月时被医院诊断得了咽炎并接受庆大霉素雾化治疗,整个治疗过程中,天天哭得很厉害,但护士却说没事,哭得越厉害吸入效果越好。10个月时,天天出现了异常,被医院诊断为双耳重度感音神经性耳聋,病因就是半岁时做的那次庆大霉素雾化治疗。 中国疾病预防控制中心传染病预防控制所所长徐建国近日直言:中国滥用抗生素情况已到了不容忽视阶段。
周①奔琅琊王睿,睿以为军谘祭酒。前骑都尉谯国桓彝亦避乱过江②,见睿微弱,谓曰:“我以中州多故来此求全而单弱如此将何以济!”既而见王导,共论世事,退,谓曰:“向见管夷吾,无复忧矣!”
日前,2016年“数博会”在贵阳召开。此次“数博会”是贵州挂牌成为国家大数据产业综合实验区以来,首次举办的一次大数据交易、数字化产品展示、互联网技术交流的大型盛会。2014年起,大数据中心、呼叫中心先后落户贵州,伴随贵阳城区无线WiFi全覆盖的建成,让贵州从昔日工业时代的追随者,变成大数据时代的同行者,甚至是领跑者。据大数据中心的工作人员介绍,大数据是依托互联网优势,融合数据库资源、与计算技术、物联网技术而研发的大型数据交易中心。大数据存储容量特别大,预计未来全球存储总量将增至40ZB,即4000万亿亿字节;资源互为关联且覆盖面广;资源实时,更新快,最快可达1分钟,甚至几秒、几十秒的更新速度。
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
2、激发对自我的认同及喜爱之情。材料准备:1、记录卡;录像、“我”(外部、内部);我的数字档案卡人手一张;活动过程: 一、理解数的实际意义:1、这几天你们找过体内和体外的数字了吗?现在请你们记录下来。2、幼儿用记录卡进行记录,老师观察指导。3、交流记录卡内容,老师有意识地将不变和可变的数字分别记录在两张卡上。4、说说小朋友身上哪些数字是一样的?哪些数字是不一样的?为什么?
1789年法国大革命后,共和派与君主派之间进行了长期反复的斗争,直到1875年法兰西第三共和国宪法通过才最终确立了共和政体,它为法国资本主义的进一步发展奠定了基础。专制色彩浓厚的普鲁士通过王朝战争这种自上而下的形式,完成了德国的统一。1871年德意志帝国宪法颁布,德国君主立宪政体确立,保留了浓厚的专制残余和军国主义传统。但资产阶级代议制的建立使德国的资本主义工业迅速发展起来,19世纪末跻身到世界强国行列。资本主义政治制度扩展到了欧洲大陆,随着这两个国家资本主义政治制度的确立,近代西方主要资本主义政治制度得以最终确立。四、板书一、法国共和政体确立的艰难历程1、艰难 (1)表现 (2)原因2、确立标志:法兰西第三共和国宪法
【活动目的】 1、通过幼儿动手操作,了解总数与部分数的概念以及它你之间的关系。 2、在学习了10以内加减法的基础上,幼儿能书面练习10以内数的加减法式子中的填空题。 【活动准备】 教具:装好皮球的篓子(大皮球4个、小皮球2个);装好水果的篓子(苹果7个、梨子3个) 学具:每人一个“小动物卡片”袋(两个品种,多少不一,总数不越过10);每人一盒橡皮泥;每人一支铅笔和一个数学练习本。
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
尊敬的各位领导、老师:大家下午好!今天我说课的题目是《100以内数的大小比较》,我将从教材、教法学法、教学流程、板书设计、教学反思五个方面来谈一谈。一、说教材1.教学内容这节课是义务教育课程标准人教版实验教科书,数学一年级下册第四单元《100以内数的认识》中的例5“比较大小”。2.教材分析学生在此之前,已经学习了20以内各数的认识及比较大小,这为过渡到本节课的学习起着铺垫作用,“做一做”可以帮助学生进一步巩固比较两个两位数大小的方法。3.教学目标为了实现“人人学有价值的数学,人人都获得必须的数学,不同的人在数学上得到不同的发展。”我确定了如下的教学目标:(1)利用现实有趣的情境激发学生的求知欲、学习数学的兴趣。(2)培养学生观察、比较、提出问题和解决问题的能力。
四、说教法与学法说教法:情境教学,在例题的教学中创设符合学生生活情境的学习环境,引导学生投入到学习当中。说学法:自主探索、合作交流的学习方法。学生们通过观察、比较和交流等学习活动,自主探索小数大小的比较方法。五、说教学过程(一)复习 1、王老师带了300元钱去买自行车,一辆自行车的价钱是295元,请问王老师带的钱够不够?(要求学生说出整数比大小的方法) 2、在下列各数按从大到小的顺序排列,你是怎样比较的? 999 1000 758 786小结:当整数位数不同时,位数多的那个数就大。当整数数位相同时,从高位开始比较,按数位顺序一位一位地比,哪一位的数大,那个数就大,就不再比下一位了。 3、小明带了14元8角,到自选商场买一支钢笔,结果发现一支钢笔的价钱是13.50元,那么小明带的钱够吗? (设计意图:这样的设计从旧知识导入,可以分散本节课的教学难点,为学习新知识做好铺垫。)
六、教学程序设计(“一三五”模式)为了完成这节课的教学目标,我是这样安排的:第一环节: (约10分钟)根据对自主探究案的批阅情况,解决学生的遗留问题具体实施:投影学生的自主探究案,让学生交流讨论,教师点评。第二环节: ( 约30分钟)新课学习:在“课堂互动案”的导学提纲引领下,完成这节课的三维教学目标。具体实施:多媒体辅助教学、交流讨论。第三环节: (约5分钟)课堂小结和布置作业:为了体现课程改革的新理念——学生是学习的主人,我改变传统的教师总结为学生总结的模式,既强化了学生所学的知识,又培养了学生的归纳和概括能力。作业分为两部分:(1)书面作业p85,1、2、3、4。(2)完成“应用提升案”。七、板书设计由于多媒体在物理教学中仅是一种辅助手段,不能完全取代黑板,因此一节课的主要内容和学生的必要参与还需要借助黑板来帮助。我在这节课的板书设计中突出了主要内容,简洁明了。
二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√
(2)能分析比较使用不同材料进行固定的特点。 活动准备: 双面胶、磁性板、动植物、人物的小图片若干。 活动过程:1、出示小图片及各种材料,引起幼儿动脑尝试的欲望。 教师:秋天真美丽,这里有许多小朋友自己涂.剪的秋天的花果树.人和动物的图片,我们来把这些小图片放在板上,看画讲故事,好吗?可是我们用什么办法让这些小图片固定在这几张直立的板上呢?
一、说教材《用比例解决问题》是义务教育课程标准实验教科书六年级下册第四单元比例的第三节比例的应用的一个子内容,这部分内容是在学生学习过比例的意义和基本性质,正比例和反比例意义基础上进行教学的,是比例知识的综合运用。教材在这部分内容中安排了例5和例6两个含正、反比例的问题,这类问题学生实际上已经接触过,只是用归一、归总的方法来解答,本节课要让学生从比例知识的角度寻找一种新的解决这种特殊数量关系的方法,从而丰富学生解决问题的策略。通过解答可以使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,同时,由于解答时是根据正、反比例的意义来列方程,也可以巩固和加深对所学的简易方程的认识。所以这一教学内容既是对前面所学的正、反比例知识的巩固和应用,另外也是为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。
新知探究前面我们研究了两类变化率问题:一类是物理学中的问题,涉及平均速度和瞬时速度;另一类是几何学中的问题,涉及割线斜率和切线斜率。这两类问题来自不同的学科领域,但在解决问题时,都采用了由“平均变化率”逼近“瞬时变化率”的思想方法;问题的答案也是一样的表示形式。下面我们用上述思想方法研究更一般的问题。探究1: 对于函数y=f(x) ,设自变量x从x_0变化到x_0+ ?x ,相应地,函数值y就从f(x_0)变化到f(〖x+x〗_0) 。这时, x的变化量为?x,y的变化量为?y=f(x_0+?x)-f(x_0)我们把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函数从x_0到x_0+?x的平均变化率。1.导数的概念如果当Δx→0时,平均变化率ΔyΔx无限趋近于一个确定的值,即ΔyΔx有极限,则称y=f (x)在x=x0处____,并把这个________叫做y=f (x)在x=x0处的导数(也称为__________),记作f ′(x0)或________,即
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。