4、奖品中有题,激发学生在课堂末尾疲劳的思维,再次让学生热情高涨,奖品后的一句话,及时的思想教育,这一步的练习完全脱离实物,重在算理的掌握。 5、小猫钓鱼。□+□=10,3+7=10,由此引入开放题目。□+□=10,如1+9=10,2+8=10等等。 五、你想把今天的学习情况告诉给我们希望小学的小朋友吗? 自我的评价与认可,让学生在最后带着成功,快乐的心情结束本节课。 本节课的预设是好的,课前教师与学生的交流,拉近与学生的心理距离,也为课堂上学生的表现有了心理准备。启发示的提问让学生一步步掌握本课内容,走近学生,尽可能让每一个学生得到关注,得到认可,体现人文精神,老师的热情与课堂学生融为一体。不仅是语言上的交流,更重要的是师生心灵的沟通。尽力体现学生学自已的数学,生活中的数学。但对教材理解的不足,重难点的处理上也许会把握的不够,对学生的可能出现的情况预想不够,会出现课堂纪律混乱等现象,出现非预设现象。
我说的第二个内容是:比较大小。这节内容的编写意图是先让学生利用实物的多少比较相应数的大小,在利用计数器比较所表示数的大小,接着在直接比较数的大小。以上过程体现了儿童从具体到抽象的认知特点,便于学生掌握比较两个数大小的一般方法。另外,教材提供了充分的并且贴近学生生活实际的教学资源,我们应尽量利用好它,并积极地动手制作学具,以便提高教学效果。以下是教学流程及说明。第一大环节出示例8鸡蛋图,观察比较。这幅图的情景非常贴近农村孩子的生活,学生一看就会感到很亲切,教师可以用兴奋的语言介绍画面,使画面生动起来,同时也明确了学习任务,比如可以这样说:“明明家养了两只母鸡,小鸡下蛋了,明明真高兴,他每天都帮着妈妈捡鸡蛋,而且明明是个细心的孩子,他把两只鸡下的蛋放在各自的盘里,让两只鸡比比赛,看谁下得蛋多。小朋友,你们知道哪只鸡下的蛋多吗?我们快来数一数吧!
读数时,先读十位上的数,再读个位上的数,十位上是几就读几十,个位是几就写读几,这个数读作“二十四”。设计意图:(由用小棒表示数过渡到用计数器上的珠子来表示,使学生初步理解数位的意义,会利用计数器正确读数、写数。)(4)教师出示4捆和2根小棒(即42根小棒),用同样的方法完成以上过程。当学生写出并读出42以后,让学生对比24与42中的“4”、“2”的意义,加深对不同数位上的数所表示的意义的理解。(设计意图:通过42与24的对比,加深对不同数位上的数所表示的意义的理解。)2.教学例5(1)第一行3题让学生独立完成,读给同桌的同学听,最后集体订正。(2)第二行第1题教师引导学生观察,十位上有4颗珠子,个位上一个也没有,试问:这个数该怎么写呢?学生回答后,教师板书“40”,并强调“当个位上一个也没有时,要用0占位”。
在100以内数的范围里,18比50是少得多,但到了万以内数的范围内,可能只是少一些,所以结合具体情境帮助孩子体会是很重要的教学方法。想想做做第1题是小孩在进行拍皮球比赛,让孩子选合适的答案,在小组中说说是怎么想的,孩子在交流中就能体会到12比46少得多,50比46多一些,85比46多得多;想想做做第2题是发生在校园里的一个场景,让孩子自己选合适的答案,说说怎么想的,孩子就能体会到16比38少的多,36比38少一些,40比38多一些;第3题的场景是在商店里,让孩子先讨论、认识“贵多啦”的含义,在进行选择,在选择、辨析时进一步明白贵多啦就是“用的钱多得多”;最后,和孩子进行一些活动,比比身高(孩子和孩子比、老师和孩子比)、比比身边的一些数量大小,让孩子尝试用语言描述的同时体会数量之间的大小关系,感受到数学就在身边。最后由一个游戏结束本节课,让孩子拿一个数同45比一比,自己想两个数让同桌比一比,练习使用多些、少些多的多、少的多描述两个数量之间的大小关系,增强合作能力。
这一环节的设计,我运用直观和操作的方法,调动小学生耳、眼、口、手多种感官参与学习活动,并且互相配合使学生的大脑保持兴奋状态,有利于学生形成完整正确的方位要领。而且使分类与方位结合在一起,让学生在玩中逐步了解到一个数学知识不可能单一存在,在生活中处处都存在多种的数学知识。(三)练中生趣,以趣促练1、出示一副美丽的田野风光,看到这么美的场景,同学们可展开想象的翅膀,随意添上你想加的物体,并且运用学过的知识小组间互相说几句话。这时学生有的加上一轮红日,有的加有一轮明月,有的可能画上一朵小花……小组间展开了激烈的讨论,都可以准确的说出谁在谁的上面,谁在谁的下面等等这些相对位置的话。2、课件展示一所空着的4层楼房,请同学们拿出手中喜欢的动物图片贴在空房子里,互相说一说你第一层、第二层、第三层、第四层分别贴的是哪些小动物,用我们学过的知识再说一说谁住在最下面,是第几层,第二层住的是谁,它在谁的上面、谁的下面,第三层呢?
2.通过动手操作、交流算法,使学生经历十几减9的过程,知道想加算减、破十法、连减等多种计算方法,理解算理,掌握算法。能正确计算。3.在学习过程中,培养学生简单的推理能力、表达能力和解决问题的能力。教学重点:掌握十几减九的计算方法,正确、熟练的进行计算。教学难点:经历十几减九的过程,感受算法多样化,理解算理。我的教学过程分为四个大环节,其中第二环节是本节课的重点环节,我又设计了五个小层次:下面我就具体说一说我的教学过程。一、创设情境,复习导入(3分钟)我以元旦快到了,班里要举行游艺活动这样的情境进入练习。【设计意图:在带着学生走向新知之前,再现与新知有关的原认知,复习前面所学的20以内的进位加,数的分解和组成及10减几等知识,为今天学习新课做好铺垫。】接着我以元旦游艺活动,班里要用气球布置教室来引入新课。【设计意图:以学生感兴趣的身边问题吸引他们的注意力,激发兴趣,并巧妙引出新课。】
一、注意联系生活实际创设数学活动。教学要成功就必须要激发学生的兴趣和求知欲,让学生积极主动地参与到学习过程之中,使学习成为他们迫切的需要。“玩”是儿童的天性,在设计这节课时,我注重让学生在活动中体验数学知识,做到“在玩中学,在学中练”,完成了由知识到能力的升华。这节课一共设计了三个紧密联系的活动。1.活动一,到小精灵购物广场去买东西。这个活动由小淘气带领大家到小精灵购物广场去买东西,通过购物这个具体情境,让学生学会简单计算,学会计算的思考过程和如何付钱的方法,并体会到付钱的方法有多种形式。2.活动二,到游乐场去。恰逢六一儿童节即将来临,根据学生的喜好,创设了到游乐场去玩的情景,用20元钱去游乐场活动,你想做那些游戏呢?这个题目是在20元这个范围内,让学生进行有关元、角、分的计算。通过这个情境使学生进一步学习有关元、角、分的知识。3.活动三,合伙开百货店。
第三个图采用教师适当提醒,由学生自己收集背景材料中的数学信息,自己根据信息提出问题,解决问题,有利于培养学生问题解决能力。)(4)出示整幅图,综合感知,提出问题在学生解决了三个游戏中的数学问题,进一步感知解决一个数学问题所必须具备的条件后,通过媒体显示相关数学信息,再引导学生观察整个画面,选择有用信息,提出不同的问题。这样安排有利于学生更加明确应用题的结构特征,掌握如何根据特定的情景,提出问题,解决数学问题;有利于培养学生的问题意识和创新思维;有利于提高学生用数学眼光观察周围事物的能力和问题解决的能力。三、巩固反馈,深化新知1. 书上“做一做”。(结合小学生追求快乐的天性,好胜的心理,我设计帮小动物解决问题的故事情境,吸引学生的学习兴趣,营造出充满生气和激情的学习氛围,并运用奖励措施,满足孩子们成功的喜悦心理需求)
刚才大家只用了几个简单的图形就摆出了这么多不同的的规律,可见数学真奇妙!认真观察这些作品,他们贴得都有规律吗?谁有问题想问大家?生可能问:看到这些规律,你有什么想说的吗?谁能看出黑板上摆的第一条规律?第三条继续摆,下一个是什么图形?最后一条该怎么分组,规律就看得特别清楚了?这些规律有什么相同和不同的地方?……师生共同总结出: 今天我们研究的规律都是有关图形的规律;摆放的图形的颜色、方向、形状以及个数的变化都可出现一些有趣的规律。聪明的设计师都习惯运用规律来布置我们周围的环境,我们也可以应用规律来美化我们的生活。六、反思拓展,总结全课师:这节课快上完了,评价一下自己吧.这节课你快乐吗?你会了吗?有没有遗憾?生活中有了规律就有了美,希望同学们课后继续去发现美,创造美,让我们的生活更加多姿多彩!
2、教材分析整十数加、减整十数的计算是在10以内加、减法的基础上进行的,只是计数单位不同,这里以十为计数单位。教学内容的编排,分三个层次:一、以实际情景——花卉展提供计算题,并呈现算法的多样化;二、让学生动手操作(如摆小棒)理解算理、掌握算法;三、脱离直观手段,让学生思考算法。通过让学生在生动具体的情境中学习计算,引导学生独立思考与合作交流多种不同的算法,进一步培养计算能力。这样安排,有助于学生加深对相同单位的数可以直接相加、减的认识,为后面学习任意两个数相加、减打基础。整十数加、减整十数属于计算教学中的重点内容之一,应给予足够的重视。教材的编排是由直观操作等依靠实物思考到脱离实物思考,遵循由具体到抽象的原则,有利于学生抽象思维的培养,为进一步提高计算速度、培养计算能力,解决实际问题打基础。
(由除数的小数位决定。因为我们只要把除数转化成整数就成了除数是整数的小数除法。如:0.756÷0.18=75.6÷18。)(设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫)2、学习例5:买0.75千克油用10.5元。每千克油的价格是多少元?学生列式:10.5÷0.75。①要把除数0.75变成整数,怎样转化?(把除数0.75扩大100倍转化成75。要使商不变,被除数也应扩大100倍。)②被除数10.5扩大100倍是多少?(10.5扩大100倍是1050,小数部分位数不够在末尾被“0”。)3、比较例4与例5有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。)4、练习:课本P21练一练第2题,学生独立完成后,归纳小结。(设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。)
教学难点:理解整数除以分数的计算方法;二、说教法和学法为了突出重点,分散难点,让学生积极主动地参与到知识形成的过程中来。教学中采用分步探究,分步实施的原则。把整数除以分数的计算方法分两步进行探究。1.整数除以几分之一的计算方法;2.整数除以几分之几的计算方法;这样做,可以使学生通过自己的努力,小组合作交流,发现整数除以分数的计算方法。数学教学不仅是让学生获得数学的基础知识,还要教给学生学习知识的方法。培养学生的能力,发展学生的智力。教学中,让学生观察,分析,讨论引导学生寻找方法。再通过发现总结运用法则巩固知识内容。通过调动学生的积极性,不仅使学生学会了,而且会学了,会用了。从而也形成了一套良好学习方法,增强能力发展智力。
三、巩固练习,拓展应用练习是学生领悟知识,形成技能,发展智力的重要手段,我遵循“由浅入深,循序渐进”的原则设计了以下不同层次的练习。1、基本练习自主练习第1题填一填,借助直观图,巩固分数乘法的意义和计算方法。2、提高练习自主练习2、4题。本题的设计,目的是使学生除了掌握基本的数学知识和技能外,初步学会从数学的角度去观察事物、思考问题,同时,也让学生感受到生活中处处有数学,从而激发对数学的兴趣,以及学好数学的愿望。四、课堂小结,升华认识引导学生回忆总结:这节课你们都知道了些什么?你有哪些收获?这节课你表现得怎样?等等,这样的小结有利于学生巩固本节课的重点,获得成功的体验,激发学习的热情。五、板书设计:简单明了,能系统地反映出本课的重、难点。有利于学生形成一定的知识网络。都起到了“画龙点睛”的作用。
a.失信的害处有哪些?b.失信于人会对别人造成什么伤害?c.失信于人会对自己造成什么伤害?总结:从古至今,失信于人害人害己,我们可千万不能做害人害己的傻事。四、面对说话算数的人,我们的态度1.情景剧表演:张青和李媛是好朋友……虽然李媛没能和张青一起看话剧,但是张青觉得,李媛是一个说话算数的人。a.你认为李媛是个说话算数的人吗?为什么?b.你的生活中有说话算数的人吗?讲一讲他们的故事吧。2.夸夸这些守信的人a.出示守信的成语故事,请小朋友夸夸他们。总结:上了这堂课,你觉得守信重要吗?说话不算数只会给我们带来害处,而守信却能带给我们尊重,如何选择一目了然。
相关链接:联合国推动达成的部军控和裁军条约有:《南极条约》(1959年)、《外层空间条约》(1966年)、《不扩散核武器条约》(1968年)、《海床公约》(1970年)、《禁止生物武器公约》(1971年)、《月球协定》(1976年)、《禁止化学武器公约》(1992年)、《全面禁止核试验条约》(1996年)。2、推动共同发展、促进人类文明——经济方面联合国在经济和社会领域建立了一套庞大、复杂、较为系统的机构即联合国经社系统。经社系统制定指导性原则、政策框架以及行动纲领,规范国际社会各成员的行动方向,推动某些发展问题逐步得到解决。经社系统主持召开重大国际会议,从战略高度协调国际社会的经济和社会发展活动。联合国千年首脑会议制定了千年发展目标,为国际发展合作确立了路线图和时间表。经社系统长期从事开发活动,向有关国家提供发展所需的资金、技术,并帮助制定合适的发展战略和政策,为世界特别是发展中国家的经济社会发展作出了积极贡献。在解决全球环境问题方面,联合国做了大量开创性工作。
一、课程标准:1.2比较单一制与联邦制的区别,理解国家形式既包括政权组织形式,又包括国家结构形式。 二、新课教学:现代国家的结构形式(一)、民族与国家1、民族与国家结构形式的关系(1)、国家结构形式①含义:如果说国家管理形式主要是指国家的立法、行政和司法机关之问的相互关系,那么,国家结构形式就是指国家的整体与部分、中央与地方之间的相互关系。补充:国家政权组制形式即政体与国家结构形式同属国家形式,但是两者有严格的区别:前者是指政权如何组织,后者是指中央与地方之间的相互关系。②民族是影响国家结构形式的因素之一影响国家结构形式的因素有很多,民族就是其中之一。(2)、民族①含义:民族是人类历史上形成的有共同语言、共同地域、共同经济生活、共同心理素质的稳定的共同体。补充:民族是一种社会历史现象,有其产生、发展和灭亡的过程。
由样本相关系数??≈0.97,可以推断脂肪含量和年龄这两个变量正线性相关,且相关程度很强。脂肪含量与年龄变化趋势相同.归纳总结1.线性相关系数是从数值上来判断变量间的线性相关程度,是定量的方法.与散点图相比较,线性相关系数要精细得多,需要注意的是线性相关系数r的绝对值小,只是说明线性相关程度低,但不一定不相关,可能是非线性相关.2.利用相关系数r来检验线性相关显著性水平时,通常与0.75作比较,若|r|>0.75,则线性相关较为显著,否则不显著.例2. 有人收集了某城市居民年收入(所有居民在一年内收入的总和)与A商品销售额的10年数据,如表所示.画出散点图,判断成对样本数据是否线性相关,并通过样本相关系数推断居民年收入与A商品销售额的相关程度和变化趋势的异同.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
1.对称性与首末两端“等距离”的两个二项式系数相等,即C_n^m=C_n^(n"-" m).2.增减性与最大值 当k(n+1)/2时,C_n^k随k的增加而减小.当n是偶数时,中间的一项C_n^(n/2)取得最大值;当n是奇数时,中间的两项C_n^((n"-" 1)/2) 与C_n^((n+1)/2)相等,且同时取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二项式系数的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展开式的各二项式系数之和为2^n1. 在(a+b)8的展开式中,二项式系数最大的项为 ,在(a+b)9的展开式中,二项式系数最大的项为 . 解析:因为(a+b)8的展开式中有9项,所以中间一项的二项式系数最大,该项为C_8^4a4b4=70a4b4.因为(a+b)9的展开式中有10项,所以中间两项的二项式系数最大,这两项分别为C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4与126a4b5 2. A=C_n^0+C_n^2+C_n^4+…与B=C_n^1+C_n^3+C_n^5+…的大小关系是( )A.A>B B.A=B C.A<B D.不确定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。