解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。4、检验结论。(1)我们从100以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?(2)利用100以内数表来验证。(3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……(4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。在本环节,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
二是缺乏具有专业技能的社会工作者。社区矫正执法队伍因为要负责社区对象的监管,具有一定的对抗性。目前,虽然我区已经开展了村居协助社区矫正工作,全区村居工作人员有效参与到协助社区矫正工作中,但目前仍然缺乏具有专业社会工作知识技能的社会工作者帮助了解社区矫正对象的思想情感动态和技能培训、社会关系修复等工作。下一步打算:1.进一步提升XX区社区矫正工作数字化、网络化、智能化能力。深化智慧应用,提升管理教育效能,完善设施设备,推动社区矫正工作的规范化、精细化、智能化。2.计划于7月份开展集中职业技能培训。进一步做好困难社区矫正对象帮扶工作。提升心理咨询、法治教育的针对性,优化教育模式,确保矫治工作的有效开展。
各位来宾老师们,同学们:大家好!今天,我们怀着无比喜悦的心情,在这里为20XX级的本科新生举行隆重的开学典礼。首先,我谨代表学校以及全体师生员工,向新同学们表示最热烈的欢迎!向呕心沥血哺育你们健康成长的父母亲人和中学老师表示最诚挚的祝贺!同学们,你们今天走进的这座校园,每年都有一批像你们一样,来自大江南北乃至世界各国的最优秀的精英学子加入进来,传承着xx大优秀的传统和深厚的学术积淀,令古老的燕园永葆青春;更有一代又一代xx大人走出象牙塔,把母校科学民主、追求真理的种子传播开去,发扬光大。xx大学是一块圣地。她诞生于民族危亡、内忧外患的危难之秋。作为中国第xx所现代意义上的综合国立大学,自建校之日起,xx大就被赋予了变法维新、强国富民的历史使命。在她xxx年的历史长卷中每一页都写满了xx大人前仆后继,为谋求民族独立、国家解放和人民富强所做的不懈求索和拼搏。xx大是中国新文化运动的中心、五四运动的策源地,是马克思主义和科学、民主思想在中国传播的最初阵地。李大钊、陈独秀、毛泽东等一大批中国革命的中坚力量都曾在这里学习或工作过。无论是“一二.九”运动回荡在红楼的振臂疾呼——“xx大,起来!”,还是抗日战争时期西南联大“刚毅坚卓”的校训;无论是文革结束后的思想解放,还是改革开放以来的科教兴国和人才强国。在不同的历史时期,xx大的命运始终与国家和民族的命运紧紧连在一起,在中华民族谋求独立和解放、振兴与发展的艰难历程中,xx大学都做出了不可磨灭的重要贡献。
整个活动过程清晰,安排合理。教师从观察封面导入,借助提问边引导幼儿观察画面,让他们从狼大叔的眼神、动作、神情中去捕捉它随着故事的发展而不时变化的心情、心理。并采用多种手段引领幼儿阅读,猜测除了吃再没有别的爱好的狼大叔在发现一只母鸡时的激动和窃喜以及心理变化;体会当狼大叔改变主意想把母鸡养肥了再吃的时的沾沾自喜;体会大灰狼天天偷偷给母鸡送美味佳肴时的满怀希望;感受大灰狼以为时机成熟,准备捉母鸡下锅时的急切以及在门外偷窥却被母鸡称为“亲爱的狼大叔”当作恩人被热情迎进门时的尴尬,哭笑不得;感悟大灰狼被母鸡的孩子亲了100口时无奈和甜蜜以及在吃了母鸡招待它的丰盛晚餐之后,打算着再给小鸡们送100个小饼干时的娇憨可爱。这一部分金老师不仅注重创造宽松的教学氛围,积极与幼儿互动,边讲边提问,引导幼儿边听边思考,促进幼儿和教师之间的双向互动效果,同时在这一过程中金老师的引导既能关注到全体,又能兼顾到个别,由浅入深,有效激发幼儿思考,发挥幼儿的想象力,显示了幼儿的主体地位。让幼儿体会到讲述的快乐,从而在不知不觉中锻炼了语言的表达能力。
准备 本市(县)、中国地图各1张。地球仪两个。一朵小红花。每个幼儿备一张自己的照片(不超过2寸)。 过程 1、我的家在哪里 教师出示本市(县)地图。并提问:“谁能从这张图上找到我们的幼儿园?”当幼儿找到时,请用小红花贴到幼儿园的位置上。再请幼儿继续寻找“我的家在哪儿?”小朋友分组到地图前找自己的家,找到自己家的小朋友,可把自己的照片贴到上面去。经过大家一番寻找和粘贴,一幅生动、亲切的“我的家”的地图制成了。 2、我们的祖国--中国真大 教师出示地球仪,并提问:“谁能找到中国在什么地方?”“我国周围有哪些国家?”此时,教师出示世界地图,引导幼儿在世界地图上和其他国家比较,最后得出“我们中国在世界上是个很大的国家”的结论。
主题目标:1、 了解自然现象与人类的关系,结合已有经验讨论对自然现象的认识。2、感受各种自然现象的变化,对自然现象的形成产生兴趣。3、用合适的动作表现自然现象中的情景,并体验身体运动的乐趣。4、通过记录观察,尝试了解简单的气象规律。主题内容:大自然奇趣盎然。蓝天白云,风霜雨露,日出日落,大自然为人类提供了生存的条件,为人类创造了美好生活。幼儿生活在绚丽多彩的大自然中,一切都幼儿感到新奇:“天上为什么会下雨?”“风是从哪里来的?”“为什么云会有各种各样的形状?”
活动目标: 1、乐意参与集体讨论活动,大胆地表述自己的看法,并在相互的交流中学会安静地倾听、获得启发。 2、通过看VCD、讨论等活动,了解一些自我保护的知识,知道在单独情况下遇到一些陌生人时应该具有的警惕性行为。 3、在扮演等活动中感受自我保护的重要性以及遇到危险时能够想办法应对的勇敢精神。 活动准备: 《幼儿画报》图书若干册、配套赠送的VCD故事、幻灯 T课件、随机图片(如一个人在家、遇到过分热心的人等)若干 活动过程: 一、引入 如果你一个人在家的时候遇到了陌生人,怎么办? (幼儿都知道要警惕,不给陌生人开门等,给幼儿心理上作好的铺垫) 教师根据幼儿的讲述,引申出:如果你和陌生人是在外面(如走廊上、草地上、公园里、电梯里等)遇到的,而你又是一个人,那会有什么危险?你会怎么办? (出现问题情境) 二、欣赏与理解故事“电梯里有只大熊” 1、导语:有一只红袋鼠,他一个人乘坐电梯时,在电梯里碰到了一个陌生人,他会怎么办呢? 2、欣赏动画片 3、理解故事
我生长在一个普通的劳动者家庭,我父母没有给我提供优越的物质享受,可他们给予了我健康的体魄和做人的尊严。简单的生活条件让我养成了良好的生活习惯和成熟的思维方式,比如:我很少在学校吃早点,除了跟同学斗嘴玩,我是从不说一些无用的废话的,想不起来在吃穿玩乐上与人比,而在学习上我却从不认输。对老师,我可以说是惟命是从了。有时候我们还是朋友,我与老师谈生活,谈学习,我们之间既有天真纯洁的笑脸,也有期待信任的目光,是很融洽的一种师生关系。
8、板书装在套子里的人别里科夫的形象——有形的套子套己——无形的套子套人第二课时合作探究:目标挖掘主题及现实意义。问题设置,衔接上节课内容,层层深入。1、结合上节课别里科夫的形象分析:他的思想被什么套住,其悲剧原因在哪?(根据人物形象的分析与社会背景的了解,直击主题。)沙皇腐朽的专制统治套住了他的思想,沙皇的清规戒律使他不敢越雷池一步,所以他是受害者,但他的身份性格以及特定的社会环境,又让他成为沙皇统治的捍卫者。2、他恋爱的情节以及科瓦连科这两个人物的塑造的意义?(从人物以及主题入手,推翻沙皇的腐朽反动的统治,必须是每一个人都敢于打破套子,唤醒革新,更新观念,拒绝腐朽。)别里科夫渴望打破束缚,也想革新,而科瓦连科两个人物体现朝气活泼,以及勇于打破常规束缚的勇气,为革新升起了一片曙光。3、塑造别里科夫的手法,除了一般刻画人物方法外,还有什么方法?
◆重要图释1、图2.4“洞庭湖及荆江地区飞机遥感影像”图此图为飞机遥感影像成像后利用地理信息系统在室内分析处理而成。飞机遥感时正值阴雨天气,虽然图面较暗,但地物仍然具有较高的分辨率。图中湖、河等水域为黑色。居民点的颜色为浅灰色,农田格局依稀可见。2、图2.5“洞庭湖及荆江地区卫星遥感影像”图此图为卫星遥感影像成像后利用地理信息系统在室内分析处理而成。图中深色的范围表示水体,城市呈灰白色。图中看不出农田的格局,说明卫星遥感对地物的分辨率没有飞机遥感高。【学习策略】由于3S技术涉及计算机技术、地球科学、信息科学、系统科学等多个领域,技术含量高、综合性强,对于高中生来说,比较难理解,所以,本节课在介绍有关技术时,可借助教材中的流程图和影像图片。教师应采用多媒体辅助教学手段,增强学生对“3S”技术的直观认识。
在学生情绪高涨时,我又让他们观看舞蹈《我的家在日喀则》,并引导他们观察其中最典型的动作,学生在熟悉的音乐中,再次体会藏族人民的热情、奔放,感受他们对家乡的热爱,并学跳藏族舞,用身体的动作感受踢踏舞的风格,将课堂气氛推向高潮。4、歌唱家乡(情感升华)。我引导学生卓玛姐姐想知道我们的家乡在哪里?也想到我们的家乡看看,自然将学生的思绪拉回重庆,让他们想想我们的家乡有什么很有特点,很有代表性的美景、美食,帮卓玛姐姐设计“重庆一日游”线路,借助图片让学生领略到家乡的美丽,自豪感油然而生。这时再引导学生歌唱家乡、赞美家乡,德育也就自然渗透其中,再次将课堂气氛推向高潮。最后,孩子们唱着自己创编的《我的家在重庆》走出教室,去迎接来自四面八方的朋友,结束本课教学。