故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
一、教学内容:两位数减一位数和整十数(不退位)(课本第67页)。二、教学目标:1、知识与技能:让学生经历探索两位数减一位数和整十数(不退位)的计算方法的过程,掌握计算方法,能正确地口算。2、过程与方法:让学生经历自主探索、动手操作、合作交流等方式获得新知的过程,积累数学活动的经验,体会数学知识与日常生活的密切联系,增强应用意识。3、情感态度与价值观:进一步培养学生学习数学的热情,以及积极思考、动手实践并与同学合作学习的态度。三、教学重点:掌握两位数减一位数和整十数(不退位)的口算方法。四、教学难点:理解算理,把握两位数减一位数与两位数减整十位数在计算过程中的相同点与不同点。五、教具准备:课件、题卡、等。六、教学过程:(一)、创设情境,提出问题。
教学目标1、通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.2、培养学生仔细、认真的学习习惯.3、培养学生观察、演绎推理的能力.教学重点整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.教学难点整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.教学过程设计一、复习准备(演示课件:整数加法运算定律推广到分数加法)下载1.教师:整数加法的运算定律有哪几个?用字母怎样表示?板书:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式应用了什么运算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.二、学习新课(继续演示课件:整数加法运算定律推广到分数加法)下载1.出示:下面每组算式的左右两边有什么关系?
2004年的雅典奥运会上,孔令辉获得冠军时忘情地亲吻胸前的国徽时,王军霞夺得金牌后激动的身披国旗绕运动场奔跑时,我们的泪水也会与领奖台上以手抚着胸前国徽高唱国歌的运动员的热泪一起落下。为了看体育比赛,我们甚至不惜守候到半夜而无怨无悔。在半夜看比赛时,我总在想:是什么让我们“为伊消得人憔悴”,为什么“总有一种力量让人泪流满面”。现在我有了答案:那是一种奥林匹克精神在激励着我们,在提升着我们。奥林匹克精神的内涵是丰富的。国际奥委会主席罗格在其就任宣言中指出:“奥林匹克的格言是更快、更高、更强。在新世纪来临的时候,或许对体育来讲需要新的格言,那就是更干净、更人性、更团结。” 奥林匹克精神让我们振奋,今天我们就来学习这篇课文《庆祝奥林匹克运动复兴25周年》。
1、齐读第三自然段。思考:亚里士多德讲过什么话?伽利略对这话是怎么看的?(亚里士多德说过:“两个铁球,一个10磅重,一个1磅重,同时从高处落下来,10磅重的一定先着地,速度是1磅重的10倍。”伽利略对这话产生了怀疑)2、伽利略为什么怀疑亚里士多德说的话?他是怎么想的?(“他想:如果这句话是正确的,……这怎么解释呢?”)3、伽利略的分析,是把亚里士多德的话当作两种假设,推出两个结论。这两个结论是什么?(①把一个10磅重,一个1磅重的两个铁球拴在一起,如果仍然看作是两个球,落下的速度应当比原来10磅重的铁球慢。②如果看做是一个整体,落下的速度,应当比原来10磅重的铁球快)4.这两个结果一样吗?是什么样的结果?(不—样,是相互矛盾的)5.根据同一句话,会推出两个相互矛盾的结果,所以伽利略认为这句话是靠不住的,值得怀疑。6,他打算怎么做?(用试验来证明不同重量铁球落地的情况)
1、认真读课文,边读边想课文每个自然段都写了什么,给课文划分段落。2、学生交流段落划分,说明分段理由。3、教师对照板书进行小结:这篇课文思路特别明晰,作者开门见山提出自己的观点,明确指出“真理诞生于一百个问号之后”这句话本身就是“真理”,然后概括地指出在千百年来的科学技术发展史上,那些定理、定律、学说都是在发现者、创造者解答了“一百个问号之后”才获得的,由此引出科学发展史上的三个有代表性的确凿事例,之后对三个典型事例作结,强调这三个事例“都是很平常的事情”,却从中发现了真理,最后指出科学发现的“偶然机遇”只能给有准备的人,而不会给任何一个懒汉。
谈话导入 1、咱班的小朋友今天可真精神,孩子们,喜欢听故事吗?(喜欢)今天陈老师给大家带来了一个好听的故事,故事的名字叫“揠苗助长”。来,伸出小手和老师一起书写课题,“揠”是提手旁,“助”是“帮助”的助。 2“揠苗助长”讲了一个什么故事呢?我们一起来听听吧。(放课件) 3、故事听完了,那你知道揠是什么意思吗?(拔),噢!所以也有好多人把揠苗助长叫(拔苗助长)。这个农夫想让禾苗快点长高,就(拔禾苗)帮助禾苗生长。可结果禾苗却枯死了。想不想自己读读这个故事?(想)。
(一)例题引入篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分。某队在10场比赛中得到16分,那么这个队胜负场数分别是多少?方法一:(利用之前的知识,学生自己列出并求解)解:设剩X场,则负(10-X)场。方程:2X+(10-X)=16方法二:(老师带领学生一起列出方程组)解:设胜X场,负Y场。根据:胜的场数+负的场数=总场数 胜场积分+负场积分=总积分得到:X+Y=10 2X+Y=16
(3)从“取笑”的闹剧中,你心里生发出哪些感触?学生自主思考,交流展示。预设:作者表达了对刘姥姥这位社会底层的农村老妇的悲悯和尊敬;通过刘姥姥的眼睛映射出贾府豪奢、腐朽的景象,对贾府的腐败没落进行了侧面批判;告诉我们生活不易,要珍惜当下。【设计意图】经典作品,在于其艺术性和思想性,深读侧重于引导学生以《刘姥姥进大观园》为例指导学生课外阅读《红楼梦》,达到课内学法课外实践,真正落实语文核心素养的目的。六、拓读,学以致用之微写作模仿文中第7段对众人各具情态又绘声绘色的笑态的描写,描写在运动会上班级获得团体冠军那一刻同学们和老师的不同神态,并以此表现不同人物的特点。【设计意图】捕捉写作微写作点,常态化训练微写作,是提高学生写作能力的最佳途径。学习经典小说的经典写法,更是胜过教师讲解任何写作技巧。
毒品损害健康,残害生命,对个人、家庭、社会的危害是巨大的。青少年正处于生理发育和心理发展的重要时期,心理防线薄弱,好奇心强、判断是非能力差,容易成为毒品侵袭的人群。据调查,在我国的吸毒中,35岁以下的青少年占80%以上。而且,近年来中小学生群体吸毒现象有所增加。特别是随着“摇头丸”的出现,青少年吸毒人数有进一步上升的趋势,吸毒年龄也更加“年轻化”。如果把毒品比做猛兽,那么它最容易下口的对象就是青少年;如果把毒品比做瘟疫,最容易感染的也是青少年。青少年一旦“染毒”,其身心健康受到的损害,远大于成人。
骑自行车的交通安全 我国是自行车大国,许多年满12周岁的同学都骑自行车上学,骑自行车应注意哪些问题呢?下面请听一名同学朗诵《安全骑车歌》。 安全骑车歌 同学们骑自行车,听我唱段安全歌。 车铃好使闸要灵,有了情况车能停。 上街注意看信号,千万不要冒险行。 信号就是指挥员,骑车第一讲安全。 看见红灯快刹闸,该等多久等多久。 绿灯亮了才能行,安全通行不争抢。 十字路口人车多,左右观察听八方。 骑车带人危险大,攀扶车辆更可怕。 中速骑车靠右侧,分道行驶路畅通。 骑车拐弯要示意,不能猛拐一溜风。 手拉手儿把肩摸,十有八、九要撞车。 双手离把更不行,撞上汽车命归西。 骑车不走一条线,东摇西摆像醉汉。 不定哪天出事故,头破血流住医院。 驮载东西别超宽,超高超长也危险。 骑车让让讲安全,事情虽小不平凡。
2、 在故事和儿歌的帮助下,理解蜘蛛网的基本构造。 3、 体验帮助他人的快乐。 活动准备: 课件(蜘蛛、蜘蛛先生造房子的幻灯片、蜘蛛网)、幼儿绘画纸(上有蜘蛛),蜡笔 活动过程: 一、故事导入,引发兴趣。 1、 课件出示蜘蛛,让幼儿观察认识蜘蛛。 2、 结合课件,教师讲述故事《蜘蛛先生造房子》。 问:蜘蛛先生在找什么? 蜘蛛先生是用什么造房子的? 蜘蛛先生的房子是怎样的? 3、出示相应的蜘蛛网让幼儿观察蜘蛛网的构造。
《场景歌》是统编版二年级上册第二单元的一篇识字课文。这是一组数量词归类识字。把数量词分类集中在四幅不同的图画之中,让学生在感受美丽景色、感受美好生活的同时,认识事物,认识表示事物的汉字,初步感知不同事物数量词的表达方式。全文共五节。第一节是一幅大海风景图。第二节是一幅山村田园风光图。第三节是一幅公园景色图。第四幅是少先队员活动的场面。教师要充分调动学生的积极性,采用各种各样的方法,让学生自己认字,朗读。在教学的过程中,通过结合图片和上下文,欣赏美丽景色,感受美好生活,同时认识事物,初步感知不同事物数量词的表达方式。 1.认识“帆、艘”等10个生字,会写“处、园”等10个生字。2.正确朗读课文。初步感受场景展示的美丽景色,了解不同事物数量词的不同的表达。3.选择照片或图画,仿照课文,学习用数量词表达生活中的事物。4.培养学生留心观察周围事物的习惯,培养学生的观察能力和想象能力。 1.教学重点:会认、会写课文相关生字。正确朗读课文。背诵课文。初步感受场景展示的美丽景色,了解不同事物量词的不同表达。2.教学难点:培养学生留心观察周围事物的习惯,培养学生的观察能力和想象能力。学习用数量词表达生活中的事物。 2课时
【教学目标】1、了解方程、不等式、函数的图像之间的联系;2、掌握一元二次不等式的图像解法;【教学重点】1、 方程、不等式、函数的图像之间的联系;2、 一元二次不等式的解法。【教学难点】 一元二次不等式的解法。【教学设计】 1、从复习一次函数图像、一元一次方程、一元一次不等式的联系入手;2、类比观察一元二次函数图像,得到一元二次不等式的图像解法;3、加强知识的巩固与练习,培养学生的数学思维能力。【课时安排】 2课时(90分钟)【教学过程】一、一元二次不等式的解法² 复习回顾1、根据初中所学知识,填写下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的图像ax²+bx+c=0 (a>0)的根有 2 个根有 1 个根有 0 个根2、观察二次函数y=x²-5x+6的图像,回答下列问题:(1)当y=0时,x取什么值?(2)二次函数y=x²-5x+6的图像与x轴交点的坐标是什么?(3)当y<0时,x的取值范围是什么?总结:由此看到,通过对函数y=x²-5x+6的图像的研究,可以求出不等式x²-5x+6>0与x²-5x+6<0的解集
教学内容4.4.1 对数函数及其图像与性质教学时间 (不超过3课时)2课时授课类型新授课班级 日期 教学目标知识目标:掌握对数函数的概念,图象和性质,并会简单的应用.能力目标:观察对数函数的图像,总结对数函数的性质,培养观察能力.情感目标:)体味对数函数的认知过程,树立严谨的思维习惯.教学重点对数函数的图像及性质.教学难点对数函数图象和性质的发现过程,培养数形结合的思想.教法学法这节课主要采用启发式和引导发现式的教学方法。⑴ 实例引入知识,提升学生的求知欲;⑵ “描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质; ⑶知识的巩固与练习,培养学生的思维能力;通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受.课前准备1.备教材、备学生 2.PPT课件 3.五环四步教学模式教案教 学 过 程环节教师活动师生活动预期效果一环 学情 动员某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,……,那么,知道分裂得到的细胞个数如何求得分裂次数呢? 设1个细胞经过y次分裂后得到x个细胞,则x与y的函数关系是,写成对数式为,此时自变量x位于真数位置.师:根据式,给定一个x值(经过的次数),就能计算出唯一的函数值y.实际上,在这个问题中知道的是y的值,要求的是对应的x值.所以用对数形式表示, 通常我们用x表示自变量,用y表示因变量, 易于学生想象领会函数意义二环问题 诊断一般地,形如的函数叫以为底的对数函数,其中a>0且a≠1.对数函数的定义域为,值域为R. 例如、、都是对数函数. 教师引导学生联系上面“情景问题”的表达式,请同学们思考讨论对数函数的概念. 师:(1) 为什么规定 a>0且 a≠1? (2) 为什么对数函数的定义域是(0,+∞)? 指导体会对数函数的特点。让学生牢记底数大于零且不等于1,真数大于零.
课题名称4.1实数指数幂授课班级 授课时间13机电1课题序号 授课课时第 到 授课形式启发、类比使用教具课件教学目的1.识记n次方根的概念,能区分奇次方根、偶次方根和n次根算式根。 2.能描述分数指数幂的定义,会进行根式与分数指数幂的互化。 3.识记有理数指数幂的运算性质,会进行简单的有理数指数幂的运算。教学重点有理数指数幂的运算、实数指数幂的综合运算教学难点有理数指数幂的运算、实数指数幂的综合运算更新、补 充、删减 内容无课外作业 1.P 96 习题。 授课主要内容或板书设计实数指数幂 概念 思考交流 例题 课堂小结 问题解决 练习 教学后记
【教学目标】知识目标:⑴ 理解指数函数的图像及性质;⑵ 了解指数模型,了解指数函数的应用.能力目标:⑴ 会画出指数函数的简图;⑵ 会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.【教学重点】⑴ 指数函数的概念、图像和性质;⑵ 指数函数的应用实例.【教学难点】指数函数的应用实例.【教学设计】⑴ 以实例引入知识,提升学生的求知欲;⑵ “描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;⑶知识的巩固与练习,培养学生的思维能力;⑷实际问题的解决,培养学生分析与解决问题的能力;⑸以小组的形式进行讨论、探究、交流,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】 教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 4.2指数函数. *创设情景 兴趣导入 问题 某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,知道分裂的次数,如何求得细胞的个数呢? 解决 设细胞分裂次得到的细胞个数为,则列表如下: 分裂次数x123…x…细胞个数y2=4=8=…… 由此得到, . 归纳 函数中,指数x为自变量,底2为常数. 介绍 播放 课件 质疑 引导 分析 了解 观看 课件 思考 领悟 导入 实例 比较 易于 学生 想象 归纳 领会 函数 的变 化意 义 5
PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。