提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

部编人教版六年级下册《表里的生物》说课稿(一)

  • 部编版语文九年级上册《湖心亭看雪》教案

    部编版语文九年级上册《湖心亭看雪》教案

    一、导入新课常言道:“上有天堂,下有苏杭。”杭州最美在西湖。许多文人墨客用他们的生花妙笔描摹了西湖春夏的美。白居易说“最爱湖东行不足,绿杨阴里白沙堤”,这是杨柳依依生机盎然的西湖;杨万里说“接天莲叶无穷碧,映日荷花别样红”,这是明艳妖娆的西湖。那么,寒冬大雪后的西湖又是一番怎样的景象呢?这节课,就让我们一起去欣赏《湖心亭看雪》。二、教学新课目标导学一:认识作者,了解作品张岱(1597—1689),字宗子,号陶庵,山阴(今浙江绍兴)人。寓居杭州。出生仕宦世家,少为富贵公子,精于茶艺鉴赏,爱繁华,好山水,晓音乐、戏曲,明亡后不仕,入山著书以终。张岱为明末清初文学家、史学家,其最擅长散文,著有《陶庵梦忆》《西湖梦寻》等绝代文学名著。目标导学二:朗读训练,通文顺字1.初读文章,结合工具书梳理文章字词。2.朗读文章,划分文章节奏,标出节奏划分有疑难的语句。节奏划分示例

  • 部编版语文九年级上册《诗词三首》教案

    部编版语文九年级上册《诗词三首》教案

    一、导入新课有这样一个人,他少有大志,以管仲、晏婴等名相自期,想辅佐帝王,成就伟业,“使寰区大定,海县清一”。即使退而求其次,也要像他的乡人司马相如、扬雄那样,以一篇辞赋文章一鸣惊人,为天子所用。他二十四岁离开蜀地,“仗剑去国,辞亲远游”,漂泊大半生,直到四十二岁才奉诏供奉翰林,两年以后又不容于朝,被迫出京。这个人就是李白。今天我们来学习他的代表作《行路难》(其一),感受诗人李白的浪漫主义风格。二、教学新课目标导学一:认识作者,了解写作背景作者简介:李白,字太白,号青莲居士。中国唐朝诗人,有“诗仙”之称。年轻时漫游全国各地,曾经至长安,供奉翰林,但不久遭谗去职。晚年漂泊东南一带,最后病死于当涂。其诗多强烈抨击当时的黑暗现实,深切关怀时局安危,热爱祖国山河,同情下层人民,鄙夷世俗,蔑视权贵;但也往往流露出一些饮酒求仙、放纵享乐的消极思想。他善于从民间吸取营养,想象丰富奇特,风格雄健奔放,色调瑰奇绚丽,是中国文学史上继屈原之后伟大的浪漫主义诗人。

  • 部编版语文九年级上册《三顾茅庐》教案

    部编版语文九年级上册《三顾茅庐》教案

    【教学提示】引导学生分析把握人物的性格特征,在理清人物性格之后,可分角色扮演,还原三顾茅庐情景。角色表演时注意引导学生表现出角色的独特性格。目标导学四:精彩段落研读,解说“隆中对”内容精读“又立了一个时辰,孔明才醒……以成鼎足之势,然后可图中原也”,完成以下问题。1.请你结合全文内容,说一说你对诸葛亮所吟的四句诗的理解。明确:“大梦谁先觉?平生我自知”暗示诸葛亮“未出茅庐,已知三分天下”的雄才大略,“草堂春睡足,窗外日迟迟”写出了诸葛亮淡泊名利。这四句诗为下文故事情节的发展做了铺垫。2.为什么作者安排通过刘备的视线写诸葛亮的相貌?相貌描写片段:玄德见孔明身长八尺,面如冠玉,头戴纶巾,身披鹤氅,飘飘然有神仙之概。明确:一方面写出诸葛亮气宇轩昂,神异不凡,另一方面更加坚定了刘备对诸葛亮的信任,确实有将相之才,又为下文的一再邀请做了铺垫。

  • 部编版语文九年级上册《谈创造性思维》教案

    部编版语文九年级上册《谈创造性思维》教案

    一、导入新课被美国《Inc.》杂志赞誉为“他的创意活力无限”的罗迦·费·因格,是创意思考顾问公司的创立人与总裁,该公司专门提供激发创意与革新的方法。他为全球各大企业提供演讲与专业课程,这些企业包括可口可乐、迪士尼、英特尔、MTV、微软公司、苹果电脑等。今天我们就一起来聆听他对于创意的思考。二、教学新课目标导学一:把握论点,理清论证思路1.默读课文,找出文中主要代表作者观点的句子。明确:(1)不满足于一个答案,不放弃探求,这一点非常重要。(2)创造性的思维,必须有探求新事物并为此而活用知识的态度和意识。在此基础上,持之以恒地进行各种尝试。(3)区分是否拥有创造力的人,主要根据之一是,拥有创造力的人留意自己细小的想法。2.请你结合上述代表作者观点的句子,用自己的语言简要概括本文的论点。明确:(1)拥有创造性思维十分重要;(2)积累知识并运用知识是创造性思维的关键要素;(3)人人都有创造性思维,发挥创造性思维须留意自己的细小想法。

  • 部编版语文九年级上册《岳阳楼记》教案

    部编版语文九年级上册《岳阳楼记》教案

    一、教学新课目标导学一:精读全文,把握文章主旨1.文章第一段写重修岳阳楼的背景,这背景是什么?说明了什么?明确:在“政通人和,百废具兴”的基础上“重修岳阳楼”,这说明滕子京在谪守的逆境中,仍不以己悲,把政事治理得井井有条。由此可见作者欣赏他的阔大胸怀,与一般的“迁客”不同。2.“予观夫巴陵胜状,在洞庭一湖”,作者写出了从岳阳楼看洞庭湖的哪些特点?明确:(1)气势非凡:“衔远山,吞长江”;(2)宽阔无边:“浩浩汤汤,横无际涯”;(3)湖光山色:“朝晖夕阴,气象万千”。3.作者为什么忽然写“前人之述备矣”,从写景中跳出来写人?明确:“前人之述备矣”一句承前启后,并回应前文“唐贤今人诗赋”一语。这句话既是谦虚,也暗含转机,经“然则”一转,引出新的意境,由单纯写景,到以情景交融的笔法来写“迁客骚人”的“览物之情”,从而引出全文的主体。

  • 部编版语文九年级上册《醉翁亭记》教案

    部编版语文九年级上册《醉翁亭记》教案

    一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也是在此期间,欧阳修在滁州留下了不逊于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。

  • 部编版语文八年级上册《列夫·托尔斯泰》教案

    部编版语文八年级上册《列夫·托尔斯泰》教案

    目标导学二:细读课文,分析人物形象1.阅读第1-5段,说说作者是如何描写列夫·托尔斯泰的外貌的,表现了列夫·托尔斯泰外貌的哪些特征?明确:第1段突出托翁(托尔斯泰)的面部轮廓,尤其突出他脸的多毛特征;第2段用各种修辞形象地描写托翁面部的各个部位,表达托翁面部给人留下的整体印象是失调、崎岖、平庸,甚至粗鄙;第3段重点写面容表情,突出托翁丑陋的一面;第4段作者从多个方面、各个角度来写托翁的相貌普通和平常;第5段借托翁外貌会令拜访者感到失望来表现托翁的外貌平凡甚至丑陋。2.分析至此,托翁的形象是否与你想象中的有区别呢?请你将课文所描述的托翁形象简笔描画出来。【教学提示】本文的外貌描写十分突出,特征把握十分到位,教师可引导学生绘出托翁形象,更深入地把握托翁的外貌特征。

  • 小学一年级下册朗文1B Clothes教案

    小学一年级下册朗文1B Clothes教案

    一..知识目标:学生会认读单词: new, clothes, wear, children, look, young, beautiful2.学生会认读C部分短语:try on, look+adj. 3..学生能运用句型:All right. / What colour is /are...? / It is / They are.../1.能够掌握C部分重点单词new,clothes,wear,children,look,young,beautiful.掌握并运用句型:All right. / What colour is /are...? / It is / They are.../单词:T-shirt, shirt,dress,skirt,shorts,jeans,hat,cap,trousers二.情感目标:2.了解他人的自己和他人的服装颜色,学习正确的审美价值。

  • 空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    空间向量及其运算的坐标表示教学设计人教A版高中数学选择性必修第一册

    一、情境导学我国著名数学家吴文俊先生在《数学教育现代化问题》中指出:“数学研究数量关系与空间形式,简单讲就是形与数,欧几里得几何体系的特点是排除了数量关系,对于研究空间形式,你要真正的‘腾飞’,不通过数量关系,我想不出有什么好的办法…….”吴文俊先生明确地指出中学几何的“腾飞”是“数量化”,也就是坐标系的引入,使得几何问题“代数化”,为了使得空间几何“代数化”,我们引入了坐标及其运算.二、探究新知一、空间直角坐标系与坐标表示1.空间直角坐标系在空间选定一点O和一个单位正交基底{i,j,k},以点O为原点,分别以i,j,k的方向为正方向、以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴.这时我们就建立了一个空间直角坐标系Oxyz,O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面,Oyz平面,Ozx平面.

  • 小学数学人教版二年级上册《观察物体》说课稿

    小学数学人教版二年级上册《观察物体》说课稿

    1、教材的地位《观察物体》这节课是人教版《义务教育教科书?数学(二年级上册)》第五单元的第一课时。教材是从学生已有生活经验出发以及已学习了位置知识的基础上,借助于生活中的实物和学生的操作活动进行教学的。主要帮助学生建立初步的空间观念,发展他们的形象思维,通过一些活动,使学生认识到,从不同的角度观察同一个物体,看到的物体的形状可能是不同的,并让学生初步体会局部与整体的关系,通过这部分内容的教学,不但可以使学生学会从不同的角度观察物体,而且又为以后学习有关几何图形的知识打下坚实的基础。 2、教学目标依照《新课程标准》的要求,结合教材和学生的特点,从知识与技能、过程与方法和情感态度价值观三方面制定以下教学目标:(1)能辨认并能想象从不同位置看到的简单物体的形状。 (2)在探究中,学生掌握全面、正确的观察物体的基本方法,并感受到局部与整体的关系。 (3)通过活动,感受数学与生活的联系,培养学生观察物体的兴趣和热情。3、教学重点、难点由于小学二年级的学生方位感不强,他们往往前后不分,左右搞错,观察周围的事物也是比较单纯、直观地看表面。

  • 集合的含义与表示教师说课稿

    集合的含义与表示教师说课稿

    二.目标分析: 教学重点.难点 重点:集合的含义与表示方法. 难点:表示法的恰当选择.教学目标 l.知识与技能 (1)通过实例,了解集合的含义,体会元素与集合的属于关系; (2)知道常用数集及其专用记号; (3)了解集合中元素的确定性.互异性.无序性; (4)会用集合语言表示有关数学对象;

  • 人教版新课标高中地理必修2第六章第一节人地关系思想的演变教案

    人教版新课标高中地理必修2第六章第一节人地关系思想的演变教案

    环境问题 是伴着人口问题、资源问题和发展问题产生。本质是发展问题 ,可持续发展。6分析可持续发展的概念、内涵和 原则?可持续发展的含义:可持续发展是这样的发展,它既满足当代人的需求,而又不损害后代人满足其需求的能力。可持续发展的内涵:生态持续发展 ,发展的基础;经济持续发展,发展条件;社会持续发展,发展目的。可持续发展的原则:公平性原则——代内、代际、人与物、国家与地区之间;持续性原则——经济活动保持在资源环境承载力之内;共同性原则— —地球是一个整体。【总结新课】可持续发 展的含义:可持续发展是这样的发展,它既满足当代人的需求,而又不损害后代人满足其需求的能力。可持续发展的内涵:生态持续发展,发展的基础;经济持续发展,发展条件;社会持续发展,发展目的。

  • 人教A版高中数学必修一函数的零点与方程的解教学设计(1)

    人教A版高中数学必修一函数的零点与方程的解教学设计(1)

    本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;

  • 人教A版高中数学必修一函数的零点与方程的解教学设计(2)

    人教A版高中数学必修一函数的零点与方程的解教学设计(2)

    本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。1.了解函数的零点、方程的根与图象交点三者之间的联系.2.会借助零点存在性定理判断函数的零点所在的大致区间.3.能借助函数单调性及图象判断零点个数.数学学科素养1.数学抽象:函数零点的概念;2.逻辑推理:借助图像判断零点个数;3.数学运算:求函数零点或零点所在区间;4.数学建模:通过由抽象到具体,由具体到一般的思想总结函数零点概念.重点:零点的概念,及零点与方程根的联系;难点:零点的概念的形成.

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

上一页123...132133134135136137138139140141142143下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!

PPT全称是PowerPoint,LFPPT为你提供免费PPT模板下载资源。让你10秒轻松搞定幻灯片制作,打造⾼颜值的丰富演示文稿素材模版合集。